3 research outputs found

    Comparative analysis of plastid genomes in the non-photosynthetic genus Thismia reveals ongoing gene set reduction

    Get PDF
    Heterotrophic plants provide intriguing examples of reductive evolution. This is especially evident in the reduction of their plastid genomes, which can potentially proceed toward complete genome loss. Several milestones at the beginning of this path of degradation have been described; however, little is known about the latest stages of plastome reduction. Here we analyze a diversity of plastid genomes in a set of closely related non-photosynthetic plants. We demonstrate how a gradual loss of genes shapes the miniaturized plastomes of these plants. The subject of our study, the genus Thismia, represents the mycoheterotrophic monocot family Thismiaceae, a group that may have experienced a very ancient (60–80 mya) transition to heterotrophy. In all 18 species examined, the plastome is reduced to 14–18 kb and is highly AT-biased. The most complete observed gene set includes accD, seven ribosomal protein genes, three rRNA, and two tRNA genes. Different clades of Thismia have undergone further gene loss (complete absence or pseudogenization) compared to this set: in particular, we report two independent losses of rps2 and rps18

    Thismia hongkongensis (Thismiaceae): a new mycoheterotrophic species from Hong Kong, China, with observations on floral visitors and seed dispersal

    Get PDF
    A new species, Thismia hongkongensis S.S.Mar & R.M.K.Saunders, is described from Hong Kong. It is most closely related to Thismia brunonis Griff. from Myanmar, but differs in the number of flowers per inflorescence, the colour of the perianth tube, the length of the filaments, and the shape of the stigma lobes. We also provide inferences on the pollination ecology and seed dispersal of the new species, based on field observations and interpretations of morphology. The flowers are visited by fungus gnats (Myctophilidae or Sciaridae) and scuttle flies (Phoridae), which are likely to enter the perianth tube via the annulus below the filiform tepal appendages, and exit via small apertures between the filaments of the pendent stamens. The flowers are inferred to be protandrous, and flies visiting late-anthetic (pistillate-phase) flowers are possibly trapped within the flower, increasing chances of pollen deposition on the receptive stigma. The seeds are likely to be dispersed by rain splash

    Figure 1 from: Mar SS, Saunders RMK (2015) Thismia hongkongensis (Thismiaceae): a new mycoheterotrophic species from Hong Kong, China, with observations on floral visitors and seed dispersal. PhytoKeys 46: 21-33. https://doi.org/10.3897/phytokeys.46.8963

    No full text
    Figure 1 - Flower development in Thismia hongkongensis sp. nov. A, B Root system, with young flowering stalk developing (arrowed). C–H Developing flower, photographed over a 17-day period (10th, 14th, 16th, 19th, 23rd and 27th May, respectively) (S.S. Mar 1, HK). I, J Post-fertilization flower, showing abscission of perianth tube. Photos by S.S. Mar
    corecore