63 research outputs found
Raman spectroscopy and advanced mathematical modelling in the discrimination of human thyroid cell lines
Raman spectroscopy could offer non-invasive, rapid and an objective nature to cancer diagnostics. However, much work in this field has focused on resolving differences between cancerous and non-cancerous tissues, and lacks the reproducibility and interpretation to be put into clinical practice. Much work is needed on basic cellular differences between malignancy and normal. This would allow the establishment of a clinically relevant cellular based model to translate to tissue classification. Raman spectroscopy provides a very detailed biochemical analysis of the target material and to 'unlock' this potential requires sophisticated mathematical modelling such as neural networks as an adjunct to data interpretation. Commercially obtained cancerous and non-cancerous cells, cultured in the laboratory were used in Raman spectral measurements. Data trends were visualised through PCA and then subjected to neural network analysis based on self-organising maps; consisting of m maps, where m is the number of classes to be recognised. Each map approximates the statistical distribution of a given class. The neural network analysis provided a 95% accuracy for identification of the cancerous cell line and 92% accuracy for normal cell line. In this preliminay study we have demonstrated th ability to distinguish between "normal" and cancerous commercial cell lines. This encourages future work to establish the reasons underpinning these spectral differences and to move forward to more complex systems involving tissues. We have also shown that the use of sophisticated mathematical modelling allows a high degree of discrimination of 'raw' spectral data
A study of Docetaxel-induced effects in MCF-7 cells by means of Raman microspectroscopy
Chemotherapies feature a low success rate of about 25%, and therefore, the choice of the most effective cytostatic drug for the individual patient and monitoring the efficiency of an ongoing chemotherapy are important steps towards personalized therapy. Thereby, an objective method able to differentiate between treated and untreated cancer cells would be essential. In this study, we provide molecular insights into Docetaxel-induced effects in MCF-7 cells, as a model system for adenocarcinoma, by means of Raman microspectroscopy combined with powerful chemometric methods. The analysis of the Raman data is divided into two steps. In the first part, the morphology of cell organelles, e.g. the cell nucleus has been visualized by analysing the Raman spectra with k-means cluster analysis and artificial neural networks and compared to the histopathologic gold standard method hematoxylin and eosin staining. This comparison showed that Raman microscopy is capable of displaying the cell morphology; however, this is in contrast to hematoxylin and eosin staining label free and can therefore be applied potentially in vivo. Because Docetaxel is a drug acting within the cell nucleus, Raman spectra originating from the cell nucleus region were further investigated in a next step. Thereby we were able to differentiate treated from untreated MCF-7 cells and to quantify the cell–drug response by utilizing linear discriminant analysis models
Raman micro-spectroscopy can be used to investigate the developmental stage of the mouse oocyte
In recent years, the uptake of assisted reproductive techniques such as in vitro fertilisation has risen exponentially. However, there is much that is still not fully understood about the biochemical modifications that take place during the development and maturation of the oocyte. As such, it is essential to further the understanding of how oocyte manipulation during these procedures ultimately affects its developmental potential; yet, there are few methods currently available which are capable of providing a quantitative measure of oocyte quality. Raman spectroscopy enables investigation of the global biochemical profile of intact cells without the need for labelling. Here, Raman spectra were acquired from the ooplasm of mouse oocytes at various stages of development, from late pre-antral follicles, collected after in vitro maturation within their ovarian follicles and from unstimulated and stimulated ovulatory cycles. Using a combination of univariate and multivariate statistical methods, it was found that ooplasm lipid content could be used to discriminate between different stages of oocyte development. Furthermore, the spectral profiles of mature oocytes revealed that oocytes which have developed in vitro are protein-deficient when compared to in vivo grown oocytes. Finally, the ratio of two Raman peak intensities, namely 1605:1447 cm21, used as a proxy for the protein-to-lipid ratio of the ooplasm, was shown to be indicative of the oocyte’s quality. Together, results indicate that Raman spectroscopy may present an alternative analytical tool fo
Aprotinin administration in the pericardial cavity does not prevent platelet activation
Aprotinin is frequently administered systemically to patients undergoing cardiopulmonary bypass to inhibit activation of platelets and plasma protein systems and thus reduce postoperative blood loss. Two reports on local aprotinin administration, that is, into the pericardial cavity, also indicated improvement in postoperative blood loss, but the underlying mechanism was not investigated. We previously reported the disappearance of glycoprotein Ib from the platelet surface and the appearance of platelet-derived microparticles in the pericardial cavity of patients undergoing cardiopulmonary bypass as signs of platelet activation. Here, we investigated whether such local aprotinin administration reduced platelet activation. In a double-blind study, 6 patients received aprotinin (500,000 KIU) into the pericardial cavity during the operation and 7 patients received a placebo. Platelet surface glycoprotein Ib expression, concentration of microparticles, and concentration of complexes of platelets with leukocytes, erythrocytes, or each other, were measured by flow cytometry. We confirmed the reduced glycoprotein Ib expression and the increased concentration of microparticles in the pericardial cavity, as previously reported, and found no increased concentration of platelet complexes. However, no differences between aprotinin and placebo treatments were observed in these platelet activation parameters in the pericardial cavity or the systemic circulation. We conclude that administration of aprotinin into the pericardial cavity during cardiopulmonary bypass and at concentrations similar to the systemic application does not reduce platelet activation in that compartment or the systemic circulatio
Vibrational spectroscopic studies of microorganisms: Applications in Life, Pharmaceutical and Natural Sciences
NRC publication: Ye
Pro- and non-coagulant forms of non-cell-bound tissue factor in vivo
Background: Concentrations of non-cell-bound (NCB; soluble) tissue factor (TF) are elevated in blood collecting in the pericardial cavity of patients during cardiopulmonary bypass (CPB). Previously, we reported microparticles supporting thrombin generation in such blood samples. In this study we investigated the extent of microparticle association of the NCB form of TF in pericardial and systemic blood, and whether this microparticle-associated form is active in thrombin generation compared with non-microparticle-bound, (fluid-phase) TF. Methods: Systemic and pericardial blood samples were collected before and during CPB from six patients undergoing cardiac surgery. Microparticles were isolated by differential centrifugation and their thrombin-generating capacity measured in a chromogenic assay. Microparticle-associated and fluid-phase forms of NCB TF were measured by ELISA. Microparticle-associated TF was visualized by flow cytometry. Results: In pericardial samples, 45-77% of NCB TF was microparticle-associated, and triggered factor VII (FVII)mediated thrombin generation in vitro. Microparticles from systemic samples triggered thrombin generation independently of FVII, except at the end of bypass (P=0.003). The fluid-phase form of TF did not initiate thrombin generation. Both forms of NCB TF were, at least in part, antigenically cryptic. Conclusions: We demonstrate the occurrence of two forms of NCB TF. One form, which is microparticle-associated, supports thrombin generation via FVII. The other form, which is fluid-phase, does not stimulate thrombin formation. We hypothesize that the microparticle-associated form of NCB TF may be actively involved in postoperative thromboembolic processes when pericardial blood is returned into the patient
Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner
Background: Circulating microparticles of various cell types are present in healthy individuals and, in varying numbers and antigenic composition, in various disease states. To what extent these microparticles contribute to coagulation ill vivo is unknown. Objectives: To examine the in vivo thrombogenicity of human microparticles. Methods: Microparticles were isolated from pericardial blood of cardiac surgery patients and venous blood of healthy individuals. Their numbers, cellular source, and tissue factor (TF) exposure were determined using flow cytometry. Their in vitro procoagulant properties were studied in a fibrin generation test, and their in vivo thrombogenicity in a rat model. Results: The total number of microparticles did not differ between pericardial samples and samples from healthy individuals (P = 0.786). In both groups. microparticles from platelets, erythrocytes, and granulocytes exposed TF. Microparticle-exposed TF antigen levels were higher in pericardial compared with healthy individual samples (P = 0.036). Pericardial microparticles were strongly procoa.gulant in vitro and highly thrombogenic in a venous stasis thrombosis model in rats, whereas microparticles from healthy individuals were not [thrombus weights 24.8 (12.2-41.3)mg vs. 0 (0-24.3)mg median and range; P 0.05]. The thrombogenicity of the microparticles correlated strongly with their TF exposure (r=0.9524, P=0.001). Conclusions: Human cell-derived microparticles promote thrombus formation in vivo in a TF-dependent manner. They might be the direct cause of an increased thromboembolic tendency in various patient group
- …