176 research outputs found

    Actions and Words: Luther and James through an Alternative Hermeneutical Lens

    Get PDF

    Borderless Boundaries – as Means of Death and Life: Wilderness Portraits in Patristic and Rabbinic Literature

    Get PDF
    This study examines the role played by environmental representation of an apparent borderless boundary, the desert, as presented in Scripture – the Hebrew Bible / First Testament. It considers lessons derived from “desert-thought” testified within Rabbinic and Patristic literature. In Scripture, the desert played a prominent role in both Exodus and Akedah, two narratives central to Jewish thought and Christian theology. Beyond this, desert fathers such as Antony of Egypt expressed profound spirituality through this desolate land (Chrysostom; Athanasius, Vita). The Rabbis repeatedly embellished, for virtue’s sake, lessons gained from this same bleak landscape (Midrash Bemidbar Rabbah). An early version of this article was presented at the Canadian Society for Patristic Studies annual conference, a part of the Canadian Congress for Social Sciences and Humanities (May 26, 2014) at Brock University, St. Catharines, Ontario

    A Jewish Response to Dysfunctional and Destructive Passion

    Get PDF

    Martin Luther and Antisemitism

    Get PDF

    The Chimes of Freedom Clashing

    Get PDF

    Putting (Inter)Faith into Practice: Reflections of a Jewish Scholar in Residence at a Canadian Lutheran Seminary

    Get PDF

    Symbiosis-specific changes in dimethylsulphoniopropionate concentrations in Stylophora pistillata along a depth gradient

    Get PDF
    Scleractinian corals are prolific producers of dimethylsulphoniopropionate (DMSP), but ecophysiological mechanisms influencing cellular concentrations are uncertain. While DMSP is often proposed to function as an antioxidant, interactions between specific host–symbiont genotype associations, plasticity in DMSP concentrations and environmental conditions that can either exert or alleviate oxidative stress are unclear. We used long-term (6 months) reciprocal transplantation of Stylophora pistillata hosting two distinct symbiont phylotypes along a depth gradient, clades A (20 m), to assess the effect of change in depth (light intensity) on DMSP concentrations in relation to symbiont genotype and photoacclimation in corals between 3 and 50 m in the Gulf of Aqaba. Bathymetric distribution of total DMSP (DMSPt) per cell varied significantly while particulate DMSP (DMSPp) appeared to be unaffected by depth. Highest DMSPt concentrations in control corals occurred at 20 m. While 3-m transplants showed a significant increase in DMSPt concentration at 20 m and became affiliated with an additional genotype (C72), 50-m transplants largely persisted with their original genotype and exhibited no significant changes in DMSPt concentrations. DMSPt concentrations in transplants at both 3 and 50 m, on the other hand, increased significantly while all corals maintained their original symbiont genotypes. Photoacclimation differed significantly with transplantation direction relative to the controls. Symbionts in 3-m transplants at 20 m exhibited no changes in chlorophyll a (chl a) concentration, cell density or cell diameter while symbiont densities decreased and chl a concentrations increased significantly at 50 m. In contrast, symbiont densities in 50-m transplants remained unaffected across depths while symbiont diameters decreased. Chl a concentrations decreased at 20 m and increased at 3 m. Our results indicate that DMSPt concentrations following changes in depth are not only a function of symbiont genotype but result from different acclimation abilities of both symbiotic partners

    Assessment of Temperature Optimum Signatures of Corals at Both Latitudinal Extremes of the Red Sea

    Get PDF
    Rising ocean temperatures are pushing reef-building corals beyond their temperature optima (Topt), resulting in reduced physiological performances and increased risk of bleaching. Identifying refugia with thermally resistant corals and understanding their thermal adaptation strategy is therefore urgent to guide conservation actions. The Gulf of Aqaba (GoA, northern Red Sea) is considered a climate refuge, hosting corals that may originate from populations selected for thermal resistance in the warmer waters of the Gulf of Tadjoura (GoT, entrance to the Red Sea and 2000 km south of the GoA). To better understand the thermal adaptation strategy of GoA corals, we compared the temperature optima (Topt) of six common reef-building coral species from the GoA and the GoT by measuring oxygen production and consumption rates as well as photophysiological performance (i.e. chlorophyll fluorescence) in response to a short heat stress. Most species displayed similar Topt between the two locations, highlighting an exceptional continuity in their respective physiological performances across such a large latitudinal range, supporting the GoA refuge theory. Stylophora pistillata showed a significantly lower Topt in the GoA, which may suggest an ongoing population-level selection (i.e. adaptation) to the cooler waters of the GoA and subsequent loss of thermal resistance. Interestingly, all Topt were significantly above the local maximum monthly mean seawater temperatures in the GoA (27.1°C) and close or below in the GoT (30.9°C), indicating that GoA corals, unlike those in the GoT, may survive ocean warming in the next few decades. Finally, Acropora muricata and Porites lobata displayed higher photophysiological performance than most species, which may translate to dominance in local reef communities under future thermal scenarios. Overall, this study is the first to compare the Topt of common reef-building coral species over such a latitudinal range and provides insights into their thermal adaptation in the Red Sea
    • …
    corecore