34 research outputs found

    HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota

    Full text link
    BACKGROUND: Regardless of infection route, the intestine is the primary site for HIV-1 infection establishment and results in significant mucosal CD4+ T lymphocyte depletion, induces an inflammatory state that propagates viral dissemination, facilitates microbial translocation, and fosters establishment of one of the largest HIV reservoirs. Here we test the prediction that HIV infection modifies the composition and function of the mucosal commensal microbiota. RESULTS: Rectal mucosal microbiota were collected from human subjects using a sponge-based sampling methodology. Samples were collected from 20 HIV-positive men not receiving combination anti-retroviral therapy (cART), 20 HIV-positive men on cART and 20 healthy, HIV-negative men. Microbial composition of samples was analyzed using barcoded 16S Illumina deep sequencing (85,900 reads per sample after processing). Microbial metagenomic information for the samples was imputed using the bioinformatic tools PICRUST and HUMAnN. Microbial composition and imputed function in HIV-positive individuals not receiving cART was significantly different from HIV-negative individuals. Genera including Roseburia, Coprococcus, Ruminococcus, Eubacterium, Alistipes and Lachnospira were depleted in HIV-infected subjects not receiving cART, while Fusobacteria, Anaerococcus, Peptostreptococcus and Porphyromonas were significantly enriched. HIV-positive subjects receiving cART exhibited similar depletion and enrichment for these genera, but were of intermediate magnitude and did not achieve statistical significance. Imputed metagenomic functions, including amino acid metabolism, vitamin biosynthesis, and siderophore biosynthesis differed significantly between healthy controls and HIV-infected subjects not receiving cART. CONCLUSIONS: HIV infection was associated with rectal mucosal changes in microbiota composition and imputed function that cART failed to completely reverse. HIV infection was associated with depletion of some commensal species and enrichment of a few opportunistic pathogens. Many imputed metagenomic functions differed between samples from HIV-negative and HIV-positive subjects not receiving cART, possibly reflecting mucosal metabolic changes associated with HIV infection. Such functional pathways may represent novel interventional targets for HIV therapy if normalizing the microbial composition or functional activity of the microbiota proves therapeutically useful

    Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships

    Get PDF
    Background: Consistent compositional shifts in the gut microbiota are observed in IBD and other chronic intestinal disorders and may contribute to pathogenesis. The identities of microbial biomolecular mechanisms and metabolic products responsible for disease phenotypes remain to be determined, as do the means by which such microbial functions may be therapeutically modified. Results: The composition of the microbiota and metabolites in gut microbiome samples in 47 subjects were determined. Samples were obtained by endoscopic mucosal lavage from the cecum and sigmoid colon regions, and each sample was sequenced using the 16S rRNA gene V4 region (Illumina-HiSeq 2000 platform) and assessed by UPLC mass spectroscopy. Spearman correlations were used to identify widespread, statistically significant microbial-metabolite relationships. Metagenomes for identified microbial OTUs were imputed using PICRUSt, and KEGG metabolic pathway modules for imputed genes were assigned using HUMAnN. The resulting metabolic pathway abundances were mostly concordant with metabolite data. Analysis of the metabolome-driven distribution of OTU phylogeny and function revealed clusters of clades that were both metabolically and metagenomically similar. Conclusions: The results suggest that microbes are syntropic with mucosal metabolome composition and therefore may be the source of and/or dependent upon gut epithelial metabolites. The consistent relationship between inferred metagenomic function and assayed metabolites suggests that metagenomic composition is predictive to a reasonable degree of microbial community metabolite pools. The finding that certain metabolites strongly correlate with microbial community structure raises the possibility of targeting metabolites for monitoring and/or therapeutically manipulating microbial community function in IBD and other chronic diseases

    Gardening Effect of Host Genetics on Human Intestinal Mucosal Microbiome and Its Link to Inflammatory Bowel Disease

    No full text
    Inflammatory bowel disease (IBD) is a set of chronic, relapsing inflammatory diseases of the intestine. The two major subtypes of IBD are Crohn's disease (CD) and ulcerative colitis (UC). Although the pathogenesis of IBD remains largely unknown, Crohn's disease is considered to result from the interaction of environmental factors, including intestinal microbiota, with host immune mechanisms in genetically susceptible individuals. Recent advances in sequencing technologies have allowed us to characterize the IBD associated dysbiosis in unprecedented depth. However, phylogenetic profiling can only provide limited information on the functional implication of these alterations. To address this analytical challenge, we developed the novel mucosal lavage sampling approach, which enabled the profiling of multi'omic molecular features including microbiome, metaproteome and metabolome. Combined with host genomic information, these tools can provide us with unprecedented understanding of the dynamics of host-microbial interaction, and help us to investigate the pathogenesis of inflammatory bowel diseases. Another analytical challenge to identify microbial taxa consistently representing IBD associated dysbiosis is the high complexity and low inter-individual overlap of intestinal microbial composition. This difficulty can be overcome by an ecologic analytic strategy to identify modules of interacting bacteria (rather than individual bacteria) as quantitative reproducible features of microbial composition in normal and IBD mucosa. We developed the strategy to analyze microbial composition using microbial co-occurrence network approach. This strategy uncovered 5 reproducible functional microbial communities (FMCs) detectable in the mucosa of all individuals. The quantitative levels of two FMCs were significantly associated with IBD states. Imputed metagenome analysis indicated the functional importance of the disease associated modules reflected by the enrichment of virulent and pathogenic pathways. Thus, these modules appear to define novel microbial communities within the intestinal microbial ecology, some of which are commonly and stably modified by the IBD disease state, and may be of particular relevance for microbial pathogenesis and intervention. Using this experimental and bioinformatic framework, we investigated the microbial gardening effect of FUT2 gene and its link to Crohn's disease. Fucosyltransferase 2 (FUT2) is an enzyme that is responsible for the synthesis of the H antigen in body fluids and on the intestinal mucosa. Non-secretors, who are homozygous for the loss-of-function alleles of FUT2 gene (sese), have increased susceptibility to Crohn's disease. In healthy individuals, imputed metagenomic analysis revealed perturbations of energy metabolism in the microbiome of non-secretor and heterozygote individuals, notably the enrichment of carbohydrate and lipid metabolism, cofactor and vitamin metabolism, and glycan biosynthesis and metabolism related pathways; and, the depletion of amino acid biosynthesis and metabolism. Similar changes were observed in mice bearing the FUT2-/- genotype. Metabolomic analysis of human specimens revealed concordant as well as novel changes in the levels of several metabolites. Human metaproteomic analysis indicated that these functional changes were accompanied by sub-clinical levels of inflammation in the local intestinal mucosa. In an extended cohort containing both healthy and CD individuals, the phylogenetic composition of intestinal mucosal microbiota was affected by an interaction of Crohn's disease status and FUT2 genotype. Decreased abundances of Firmicutes were associated with both CD and FUT2 risk allele. At metagenomic level, a distinct signature of amino acid metabolism deficiency was identified in CD and non-secretor microbiome. Such changes were also reflected at metabolomic level in the proximal gut region. Taken together, FUT2 gene increased the risk of Crohn's disease by changing the microbial composition and function to a disease-like state. The CD associated perturbations of metagenome and metabolome were driven by the FUT2 risk allele. The same experimental and bioinformatic approach can also be applied to study the composition and functional changes of mucosal associated microbiota in other chronic inflammatory disease, namely HIV-1 infection. In the rectal mucosa, microbial composition and imputed function in HIV-positive individuals not receiving cART was significantly different from HIV-negative individuals. Genera including Roseburia, Coprococcus, Ruminococcus, Eubacterium, Alistipes and Lachnospira were depleted in HIV-infected subjects not receiving cART, while Fusobacteria, Anaerococcus, Peptostreptococcus and Porphyromonas were significantly enriched. HIV-positive subjects receiving cART exhibited similar depletion and enrichment for these genera, but were of intermediate magnitude and did not achieve statistical significance. Imputed metagenomic functions, including amino acid metabolism, vitamin biosynthesis, and siderophore biosynthesis differed significantly between healthy controls and HIV-infected subjects not receiving cART. In the cervicovaginal mucosa, significant differences in alpha and beta diversity were observed between HIV-negative and HIV-positive women, with the latter enriched of organisms associated with bacterial vaginosis and depleted of Lactobacilli. These ecologic changes occurred concomitantly with significant metagenomic and immunologic differences. Such functional pathways may represent novel interventional targets for HIV therapy if normalizing the microbial composition or functional activity of the microbiota proves therapeutically useful

    Sampling of Intestinal Microbiota and Targeted Amplification of Bacterial 16S rRNA Genes for Microbial Ecologic Analysis

    No full text
    Dysbiosis of host-associated commensal microbiota is emerging as an important factor in risk and phenotype of immunologic, metabolic, and behavioral diseases. Appropriate collection and pre-processing of biospecimens from humans or mice is necessary for accurate analysis of microbial composition and functional state. Methods to sample intestinal luminal and mucosal microbiota from humans and mice, and to profile microbial phylogenetic composition using 16S rRNA sequencing are presented here. Data generated using this protocol can be used for downstream quantitative analysis of microbial ecology
    corecore