17 research outputs found

    Mutagenesis and characterization of a Bacillus amyloliquefaciens strain for Cinnamomum camphora seed kernel oil extraction by aqueous enzymatic method

    No full text
    Abstract The purpose of the present study was to increase the proteinase activity of the strain NCU116 by combining ultraviolet irradiation and N-methyl-N′-nitro-N-nitroso guanidine treatment, in order to enhance the efficiency of Cinnamomum camphora seed kernel oil (CCSKO) extraction by aqueous enzymatic method (AEM). The mutated strain, designated as NCU116-1, was screened out by the ratio of hydrolytic zone diameter to colony diameter on skim milk plate. The proteinase activity (9116.1 U/ml) of NCU116-1 was increased by 31.9% compared with the parental strain. The extracellular enzymes produced by NCU116-1 included proteinase, pectase, glucoamylase, cellulase and amylase. The proteinase had the maximum activity at 50 °C. Its optimum temperature and pH value were approximately 45 °C and 8.0 respectively. Mn2+ was an activator of neutral proteinase. The glucoamylase had the maximum activity at 35 °C, and was activated by Cu2+, Fe3+ and Mn2+. Its optimum temperatures and pH value were 35 °C and 8.0 respectively. The pectinase had the maximum activity at 40 °C, and was activated by Ca2+ and Mn2+. Its optimum temperatures and pH value were 35–40 °C and 6.0 respectively. The optimum conditions of CCSKO extraction by AEM were also investigated. The results suggested that the best amount of enzyme solution and enzymolysis time were 20% (v/v) and 4 h, respectively. The oil extraction rate was 95.2% under these conditions. Thus, a suitable mutated strain was selected for CCSKO extraction by AEM and the optimum extraction conditions were determined

    Dextran Conjugation Improves the Structural and Functional Properties of Heat-Treated Protein Isolate from <i>Cinnamomum camphora</i> Seed Kernel

    No full text
    The Cinnamomum camphora seed kernel (CCSK), with high contents of medium-chain oil (~59%) and protein (~19%), is an excellent source for a plant-based food ingredient. To broaden the application of the protein isolate (PI) from CCSK in the food industry, the Maillard reaction products (MRPs) were prepared by PI and dextran (DX) under mild wet-heating conditions (60 °C, 5 h), and the structural and functional properties of the PI-DX conjugates were investigated. The covalent bond between PI and DX was confirmed by the degree of grafting and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Compared with the heated PI, the PI-DX conjugates had more ordered structure, with the decreased random coil content. The changes in tertiary structure of PI-DX conjugates were reflected by the results of intrinsic fluorescence and surface hydrophobicity. Moreover, PI-DX conjugates showed better solubility, emulsifying properties, thermal stability and antioxidant activities. These results provided a theoretical basis for the development of PI-based MRPs with desirable characteristics

    Effects of medium‐ and long‐chain fatty acids on acetaminophen‐ or rifampicin‐induced hepatocellular injury

    No full text
    Abstract Drug‐induced liver injury (DILI) is one of the common adverse effects of drug therapy, which is closely associated with oxidative stress, apoptosis, and inflammation response. Medium‐chain fatty acids (MCFA) were reported to relieve inflammation and attenuate oxidative stress. However, little has been known about the hepatoprotective effects of MCFA in DILI. In the present study, acetaminophen (AP) and rifampicin (RFP) were used to establish DILI models in LO2 cells, and the cytoprotective effects of MCFA on hepatocellular injury were investigated. Results showed that the optimal condition for the DILI model was treatment with 10 mM AP or 600 µM RFP for 24 hr. LCFA treatment markedly reduced the cell viability and increased the activities of alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase. Meanwhile, LCFA treatment aggravated cell apoptosis, mitochondrial dysfunction, and oxidative stress. The mRNA and protein expression levels of inflammatory cytokines (IL‐1β and TNF‐α) were significantly elevated by LCFA. In contrast, MCFA treatment did not significantly affect cell viability, apoptosis, oxidative, stress and inflammation, and it did not produce the detrimental effects on DILI models. Therefore, we proposed that MCFA may be more safe and suitable than LCFA as nutrition support or the selection of daily dietary oil and fat for the patients with DILI

    PDHA1 hyperacetylation-mediated lactate overproduction promotes sepsis-induced acute kidney injury via Fis1 lactylation

    No full text
    Abstract The increase of lactate is an independent risk factor for patients with sepsis-induced acute kidney injury (SAKI). However, whether elevated lactate directly promotes SAKI and its mechanism remain unclear. Here we revealed that downregulation of the deacetylase Sirtuin 3 (SIRT3) mediated the hyperacetylation and inactivation of pyruvate dehydrogenase E1 component subunit alpha (PDHA1), resulting in lactate overproduction in renal tubular epithelial cells. We then found that the incidence of SAKI and renal replacement therapy (RRT) in septic patients with blood lactate ≥ 4 mmol/L was increased significantly, compared with those in septic patients with blood lactate < 2 mmol/L. Further in vitro and in vivo experiments showed that additional lactate administration could directly promote SAKI. Mechanistically, lactate mediated the lactylation of mitochondrial fission 1 protein (Fis1) lysine 20 (Fis1 K20la). The increase in Fis1 K20la promoted excessive mitochondrial fission and subsequently induced ATP depletion, mitochondrial reactive oxygen species (mtROS) overproduction, and mitochondrial apoptosis. In contrast, PDHA1 activation with sodium dichloroacetate (DCA) or SIRT3 overexpression decreased lactate levels and Fis1 K20la, thereby alleviating SAKI. In conclusion, our results show that PDHA1 hyperacetylation and inactivation enhance lactate overproduction, which mediates Fis1 lactylation and exacerbates SAKI. Reducing lactate levels and Fis1 lactylation attenuate SAKI

    Absolute Triple Differential Cross Sections for Low-Energy Electron Impact Ionization of Biochemically Relevant Systems: Water, Tetrahydrofuran, and Hydrated Tetrahydrofuran

    Get PDF
    An experimental procedure is reported, which provides the absolute triple differential cross sections (ATDCSs) for electron-impact ionization of large (bio)molecules. This type of measurements represents the most stringent tests for new or existing theoretical models. We will use this procedure to test the accuracy of the best currently available theoretical models for the problems of electron-impact (65 eV) ionization of the molecules water (H2O), tetrahydrofuran (C4H8O), and their hydrogen-bonded dimer H2O ¡ C4H8O. The cross sections were calculated using the molecular three-body distorted-wave (M3DW) model, the multicenter three-distorted-wave (MCTDW) approach, and the multicenter three-distorted-wave using the Ward-Macek approximation (MCTDW-WM). When compared to the new experimental ATDCS results which cover almost the full solid angle of the ejected electron and a broad range of ejected electron energies and projectile scattering angles, it is found that the data for water are generally well reproduced by the M3DW model, while strong deviations in the absolute magnitude of the cross sections are found for the MCTDW. The MCTDW-WM model provides improved agreement over the MCTDW. These theoretical models, however, become less adequate for the ATDCS of C4H8O, in particular concerning the absolute magnitude. Furthermore, we find that a water environment can play a noticeable role for the ionization dynamics in the case of hydrated molecules

    Directly imaging excited state-resolved transient structures of water induced by valence and inner-shell ionisation

    No full text
    Abstract Real-time imaging of transient structure of the electronic excited state is fundamentally critical to understand and control ultrafast molecular dynamics. The ejection of electrons from the inner-shell and valence level can lead to the population of different excited states, which trigger manifold ultrafast relaxation processes, however, the accurate imaging of such electronic state-dependent structural evolutions is still lacking. Here, by developing the laser-induced electron recollision-assisted Coulomb explosion imaging approach and molecular dynamics simulations, snapshots of the vibrational wave-packets of the excited (A) and ground states (X) of D2O+ are captured simultaneously with sub-10 picometre and few-femtosecond precision. We visualise that θ DOD and ROD are significantly increased by around 50∘ and 10 pm, respectively, within approximately 8 fs after initial ionisation for the A state, and the ROD further extends 9 pm within 2 fs along the ground state of the dication in the present condition. Moreover, the ROD can stretch more than 50 pm within 5 fs along autoionisation state of dication. The accuracies of the results are limited by the simulations. These results provide comprehensive structural information for studying the fascinating molecular dynamics of water, and pave the way towards to make a movie of excited state-resolved ultrafast molecular dynamics and light-induced chemical reaction
    corecore