16 research outputs found

    Functional characterization of PETIOLULE-LIKE PULVINUS (PLP) gene in abscission zone development in Medicago truncatula and its application to genetic improvement of alfalfa

    Get PDF
    Alfalfa (Medicago sativa L.) is one of the most important forage crops throughout the world. Maximizing leaf retention during the haymaking process is critical for achieving superior hay quality and maintaining biomass yield. Leaf abscission process affects leaf retention. Previous studies have largely focused on the molecular mechanisms of floral organ, pedicel and seed abscission but scarcely touched on leaf and petiole abscission. This study focuses on leaf and petiole abscission in the model legume Medicago truncatula and its closely related commercial species alfalfa. By analysing the petiolule-like pulvinus (plp) mutant in M. truncatula at phenotypic level (breakstrength and shaking assays), microscopic level (scanning electron microscopy and cross-sectional analyses) and molecular level (expression level and expression pattern analyses), we discovered that the loss of function of PLP leads to an absence of abscission zone (AZ) formation and PLP plays an important role in leaflet and petiole AZ differentiation. Microarray analysis indicated that PLP affects abscission process through modulating genes involved in hormonal homeostasis, cell wall remodelling and degradation. Detailed analyses led us to propose a functional model of PLP in regulating leaflet and petiole abscission. Furthermore, we cloned the PLP gene (MsPLP) from alfalfa and produced RNAi transgenic alfalfa plants to down-regulate the endogenous MsPLP. Down-regulation of MsPLP results in altered pulvinus structure with increased leaflet breakstrength, thus offering a new approach to decrease leaf loss during alfalfa haymaking process

    Phenology and Spectral Unmixing-Based Invasive Kudzu Mapping: A Case Study in Knox County, Tennessee

    No full text
    As an invasive plant species, kudzu has been spreading rapidly in the Southeastern United States in recent years. Accurate mapping of kudzu is critical for effective invasion control and management. However, the remote detection of kudzu distribution using multispectral images is challenging because of the mixed reflectance and potential misclassification with other vegetation. We propose a three-step classification process to map kudzu in Knox County, Tennessee, using multispectral Sentinel-2 images and the integration of spectral unmixing analysis and phenological characteristics. This classification includes an initial linear unmixing process to produce an overestimated kudzu map, a phenological-based masking to reduce misclassification, and a nonlinear unmixing process to refine the classification. The initial linear unmixing provides high producer’s accuracy (PA) but low user’s accuracy (UA) due to misclassification with grasslands. The phenological-based masking increases the accuracy of the kudzu classification and reduces the domain for further processing. The nonlinear unmixing further refines the kudzu classification via the selection of an appropriate nonlinear model. The final kudzu classification for Knox County reaches relatively high accuracy, with UA, PA, Jaccard, and Kappa index values of 0.858, 0.907, 0.789, and 0.725, respectively. Our proposed method has potential for continuous monitoring of kudzu in large areas

    Phenology and Spectral Unmixing-Based Invasive Kudzu Mapping: A Case Study in Knox County, Tennessee

    No full text
    As an invasive plant species, kudzu has been spreading rapidly in the Southeastern United States in recent years. Accurate mapping of kudzu is critical for effective invasion control and management. However, the remote detection of kudzu distribution using multispectral images is challenging because of the mixed reflectance and potential misclassification with other vegetation. We propose a three-step classification process to map kudzu in Knox County, Tennessee, using multispectral Sentinel-2 images and the integration of spectral unmixing analysis and phenological characteristics. This classification includes an initial linear unmixing process to produce an overestimated kudzu map, a phenological-based masking to reduce misclassification, and a nonlinear unmixing process to refine the classification. The initial linear unmixing provides high producer’s accuracy (PA) but low user’s accuracy (UA) due to misclassification with grasslands. The phenological-based masking increases the accuracy of the kudzu classification and reduces the domain for further processing. The nonlinear unmixing further refines the kudzu classification via the selection of an appropriate nonlinear model. The final kudzu classification for Knox County reaches relatively high accuracy, with UA, PA, Jaccard, and Kappa index values of 0.858, 0.907, 0.789, and 0.725, respectively. Our proposed method has potential for continuous monitoring of kudzu in large areas

    Kudzu invasion and its influential factors in the southeastern United States

    No full text
    As an invasive plant species with wide ecological tolerance and fast infestation, kudzu has posed persistent challenges to the ecosystem and economy in the southeastern United States. However, current studies on kudzu mapping and invasive mechanisms are inadequate to unveil the characteristics of kudzu’s spatiotemporal dynamics. In this study, we investigate kudzu distribution and its influential factors based on continuous Sentinel-2 satellite images and a multi-temporal mapping strategy. The study was conducted in Knox County, Tennessee, a representative region highly impacted by kudzu in the southeastern United States. Our results revealed a steady increase in the kudzu invasion area from 2020 to 2022, with a phenology of a growth season from May to September (peak in August) and a rapid defoliation in the fall. We found precipitation is not a limiting factor for kudzu growth, while temperature has strong correlations with kudzu growth, exhibiting seasonal variations in this humid subtropical region. Human activities play an important role in kudzu distribution with a sharp decrease in kudzu density away from road networks, residential clusters, and the edges of urban forests. These findings provide valuable insights into the complex nature of the kudzu invasion in Knox County, as well as other similar areas in the southeastern United States. The observed unique growth patterns of kudzu and its interactions with various environmental factors in this study are also of importance for future initiatives related to mapping the distribution and devising strategies for the prevention and control of kudzu invasion

    Pattern of Turbidity Change in the Middle Reaches of the Yarlung Zangbo River, Southern Tibetan Plateau, from 2007 to 2017

    No full text
    Turbidity is an important indicator of riverine conditions, especially in a fragile environment such as the Tibetan Plateau. Remote sensing, with the advantages of large-scale observations, has been widely applied to monitor turbidity change in lakes and rivers; however, few studies have focused on turbidity change of rivers on the Tibetan Plateau. We investigated the pattern of turbidity change in the middle reaches of the Yarlung Zangbo River, southern Tibetan Plateau, based on multispectral satellite imagery and in situ measurements. We developed empirical models from in situ measured water leaving reflectance and turbidity, and applied the best performed s-curve models on satellite imagery from Sentinel-2, Landsat 8, and Landsat 5 to derive turbidity change in 2007–2017. Our results revealed an overall decreasing spatial trend from the upper to lower streams. Seasonal variations were observed with high turbidity from July to September and low turbidity from October to May. Annual turbidity showed a temporally slightly declining trend from 2007 to 2017. The pattern of turbidity change is affected by the confluence of tributaries and the changes in precipitation and vegetation along the river. These findings provide important insights into the responses of riverine turbidity to climate and environmental changes on the Tibetan Plateau

    Nanoscale Characterization of V-Defect in InGaN/GaN QWs LEDs Using Near-Field Scanning Optical Microscopy

    No full text
    The size of the V-defects in the GaN/InGaN-based quantum wells blue light-emitting diode (LED) was intentionally modified from 50 nm to 300 nm. High resolution photoluminescence and electroluminescence of a single large V-defect were investigated by near-field scanning optical microscopy. The current distribution along the {10-11} facets of the large defect was measured by conductive atomic force microscopy. Nearly 20 times the current injection and dominant emission from bottom quantum wells were found in the V-defect compared to its vicinity. Such enhanced current injection into the bottom part of quantum wells through V-defect results in higher light output power. Reduced external quantum efficiency droops were achieved due to more uniform carrier distribution. The un-encapsulated fabricated chip shows light output power of 172.5 mW and 201.7 mW at 400 mA, and external quantum efficiency drop of 22.3% and 15.4% for the sample without and with large V-defects, respectively. Modified V-defects provide a simple and effective approach to suppress the efficiency droop problem that occurs at high current injection, while improving overall quantum efficiency

    Functional characterization of PETIOLULE-LIKE PULVINUS (PLP) gene in abscission zone development in Medicago truncatula and its application to genetic improvement of alfalfa

    Get PDF
    Alfalfa (Medicago sativa L.) is one of the most important forage crops throughout the world. Maximizing leaf retention during the haymaking process is critical for achieving superior hay quality and maintaining biomass yield. Leaf abscission process affects leaf retention. Previous studies have largely focused on the molecular mechanisms of floral organ, pedicel and seed abscission but scarcely touched on leaf and petiole abscission. This study focuses on leaf and petiole abscission in the model legume Medicago truncatula and its closely related commercial species alfalfa. By analysing the petiolule-like pulvinus (plp) mutant in M. truncatula at phenotypic level (breakstrength and shaking assays), microscopic level (scanning electron microscopy and cross-sectional analyses) and molecular level (expression level and expression pattern analyses), we discovered that the loss of function of PLP leads to an absence of abscission zone (AZ) formation and PLP plays an important role in leaflet and petiole AZ differentiation. Microarray analysis indicated that PLP affects abscission process through modulating genes involved in hormonal homeostasis, cell wall remodelling and degradation. Detailed analyses led us to propose a functional model of PLP in regulating leaflet and petiole abscission. Furthermore, we cloned the PLP gene (MsPLP) from alfalfa and produced RNAi transgenic alfalfa plants to down-regulate the endogenous MsPLP. Down-regulation of MsPLP results in altered pulvinus structure with increased leaflet breakstrength, thus offering a new approach to decrease leaf loss during alfalfa haymaking process

    Efficiency droop suppression of distance-engineered surface plasmon-coupled photoluminescence in GaN-based quantum well LEDs

    No full text
    Ag coated microgroove with extreme large aspect-ratio of 500:1 was fabricated on p-GaN capping layer to investigate the coupling behavior between quantum wells and surface plasmon in highly spatial resolution. Significant photoluminescence enhancement was observed when the distance between Ag film and QWs was reduced from 220 nm to about 20 nm. A maximum enhancement ratio of 18-fold was achieved at the groove bottom where the surface plasmonic coupling was considered the strongest. Such enhancement ratio was found highly affected by the excitation power density. It also shows high correlation to the internal quantum efficiency as a function of coupling effect and a maximum Purcell Factor of 1.75 was estimated at maximum coupling effect, which matches number calculated independently from the time-resolved photoluminescence measurement. With such Purcell Factor, the efficiency was greatly enhanced and the droop was significantly suppressed
    corecore