9,563 research outputs found

    Enhanced quantum teleportation in the background of Schwarzschild spacetime by weak measurements

    Full text link
    It is commonly believed that the fidelity of quantum teleportation in the gravitational field would be degraded due to the heat up by the Hawking radiation. In this paper, we point out that the Hawking effect could be eliminated by the combined action of pre- and post-weak measurements, and thus the teleportation fidelity is almost completely protected. It is intriguing to notice that the enhancement of fidelity could not be attributed to the improvement of entanglement, but rather to the probabilistic nature of weak measurements. Our work extends the ability of weak measurements as a quantum technique to battle against gravitational decoherence in relativistic quantum information.Comment: 9 pages, 5 figures, comments are welcom

    Enhancing teleportation of quantum Fisher information by partial measurements

    Full text link
    The purport of quantum teleportation is to completely transfer information from one party to another distant partner. However, from the perspective of parameter estimation, it is the information carried by a particular parameter, not the information of total quantum state that needs to be teleported. Due to the inevitable noise in environment, we propose two schemes to enhance quantum Fisher information (QFI) teleportation under amplitude damping noise with the technique of partial measurements. We find that post partial measurement can greatly enhance the teleported QFI, while the combination of prior partial measurement and post partial measurement reversal could completely eliminate the effect of decoherence. We show that, somewhat consequentially, enhancing QFI teleportation is more economic than that of improving fidelity teleportation. Our work extends the ability of partial measurements as a quantum technique to battle decoherence in quantum information processing.Comment: Revised version, minor changes, accepted by Phys. Rev.

    Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal

    Full text link
    Based on the quantum technique of weak measurement, we propose a scheme to protect the entanglement from correlated amplitude damping decoherence. In contrast to the results of memoryless amplitude damping channel, we show that the memory effects play a significant role in the suppression of entanglement sudden death and protection of entanglement under severe decoherence. Moreover, we find that the initial entanglement could be drastically amplified by the combination of weak measurement and quantum measurement reversal even under the correlated amplitude damping channel. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.Comment: 11 pages, 5 figures, accepted by Quantum Information Processin

    Leading Effect of CP Violation with Four Generations

    Full text link
    In the Standard Model with a fourth generation of quarks, we study the relation between the Jarlskog invariants and the triangle areas in the 4-by-4 CKM matrix. To identify the leading effects that may probe the CP violation in processes involving quarks, we invoke small mass and small angle expansions, and show that these leading effects are enhanced considerably compared to the three generation case by the large masses of fourth generation quarks. We discuss the leading effect in several cases, in particular the possibility of large CP violation in b→s b \to s processes, which echoes the heightened recent interest because of experimental hints.Comment: 12 pages, no figur

    Evolving Starburst Modeling of FIR/sub-mm/mm Line Emission. III. Application to Nearby Luminous Infrared Galaxies

    Full text link
    In a previous work, we showed that the observed FIR/sub-mm/mm line spectra of a starburst galaxy (M 82) can be successfully modeled in terms of the evolutionary scheme of an ensemble of giant molecular clouds (GMCs) and shells, and such studies can usefully constrain the age(s) or star formation history of a starburst galaxy. In this paper we present a preliminary study of using the template of an ensemble of evolving GMCs/shells we developed for M 82. we apply the model to represent various stages of starburst evolution in a well known sample of nearby luminous infrared galaxies (LIRGs). In this way, we attempt to interpret the relationship between the degree of molecular excitation and ratio of far-infrared (FIR) to 12^{12}CO (or simply CO) luminosity to possibly reflect different stages of the evolution of star-forming activity within their nuclear regions.Comment: Accepted for publication in the ApJ, 16 pages, 4 figures
    • …
    corecore