3,143 research outputs found

    Computational Aspects of Asynchronous CA

    Full text link
    This work studies some aspects of the computational power of fully asynchronous cellular automata (ACA). We deal with some notions of simulation between ACA and Turing Machines. In particular, we characterize the updating sequences specifying which are "universal", i.e., allowing a (specific family of) ACA to simulate any TM on any input. We also consider the computational cost of such simulations

    Balanced crossover operators in Genetic Algorithms

    Get PDF
    In several combinatorial optimization problems arising in cryptography and design theory, the admissible solutions must often satisfy a balancedness constraint, such as being represented by bitstrings with a fixed number of ones. For this reason, several works in the literature tackling these optimization problems with Genetic Algorithms (GA) introduced new balanced crossover operators which ensure that the offspring has the same balancedness characteristics of the parents. However, the use of such operators has never been thoroughly motivated, except for some generic considerations about search space reduction. In this paper, we undertake a rigorous statistical investigation on the effect of balanced and unbalanced crossover operators against three optimization problems from the area of cryptography and coding theory: nonlinear balanced Boolean functions, binary Orthogonal Arrays (OA) and bent functions. In particular, we consider three different balanced crossover operators (each with two variants: \u201cleft-to-right\u201d and \u201cshuffled\u201d), two of which have never been published before, and compare their performances with classic one-point crossover. We are able to confirm that the balanced crossover operators perform better than one-point crossover. Furthermore, in two out of three crossovers, the \u201cleft-to-right\u201d version performs better than the \u201cshuffled\u201d version

    Special Issue: Generative Models in Artificial Intelligence and Their Applications

    Get PDF
    Castelli, M. (Guest ed.), & Manzoni, L. (Guest ed.) (2022). Special Issue: Generative Models in Artificial Intelligence and Their Applications. Applied Sciences (Switzerland), 12(9), [4127]. https://doi.org/10.3390/app12094127In recent years, artificial intelligence has been used to generate a significant amount of high-quality data, such as images, music, and videos. The creation of such a vast amount of synthetic data was made possible due to the improved performance of different machine learning techniques, such as artificial neural networks. Considering the increased interest in this area, new techniques for automatic data generation and augmentation have recently been proposed. For instance, generative adversarial networks (GANs) and their variants are nowadays popular techniques in this research field. The creation of synthetic data was also achieved with evolutionary-based techniques, for instance, in the context of multimedia artifacts creationpublishersversionpublishe

    Characterizing PSPACE with Shallow Non-Confluent P Systems

    Get PDF
    In P systems with active membranes, the question of understanding the power of non-confluence within a polynomial time bound is still an open problem. It is known that, for shallow P systems, that is, with only one level of nesting, non-con uence allows them to solve conjecturally harder problems than con uent P systems, thus reaching PSPACE. Here we show that PSPACE is not only a bound, but actually an exact characterization. Therefore, the power endowed by non-con uence to shallow P systems is equal to the power gained by con uent P systems when non-elementary membrane division and polynomial depth are allowed, thus suggesting a connection between the roles of non-confluence and nesting depth

    Characterizing PSPACE with Shallow Non-Confluent P Systems

    Get PDF
    In P systems with active membranes, the question of understanding the power of non-confluence within a polynomial time bound is still an open problem. It is known that, for shallow P systems, that is, with only one level of nesting, non-con uence allows them to solve conjecturally harder problems than con uent P systems, thus reaching PSPACE. Here we show that PSPACE is not only a bound, but actually an exact characterization. Therefore, the power endowed by non-con uence to shallow P systems is equal to the power gained by con uent P systems when non-elementary membrane division and polynomial depth are allowed, thus suggesting a connection between the roles of non-confluence and nesting depth

    Evolutionary Strategies for the Design of Binary Linear Codes

    Full text link
    The design of binary error-correcting codes is a challenging optimization problem with several applications in telecommunications and storage, which has also been addressed with metaheuristic techniques and evolutionary algorithms. Still, all these efforts focused on optimizing the minimum distance of unrestricted binary codes, i.e., with no constraints on their linearity, which is a desirable property for efficient implementations. In this paper, we present an Evolutionary Strategy (ES) algorithm that explores only the subset of linear codes of a fixed length and dimension. To that end, we represent the candidate solutions as binary matrices and devise variation operators that preserve their ranks. Our experiments show that up to length n=14n=14, our ES always converges to an optimal solution with a full success rate, and the evolved codes are all inequivalent to the Best-Known Linear Code (BKLC) given by MAGMA. On the other hand, for larger lengths, both the success rate of the ES as well as the diversity of the evolved codes start to drop, with the extreme case of (16,8,5)(16,8,5) codes which all turn out to be equivalent to MAGMA's BKLC.Comment: 15 pages, 3 figures, 3 table
    corecore