35 research outputs found
Language Model Applications to Spelling with Brain-Computer Interfaces
Within the Ambient Assisted Living (AAL) community, Brain-Computer Interfaces (BCIs) have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion) have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models appli
Neurophysiological effects of human-derived pathological tau conformers in the APPKM670/671NL.PS1/L166P amyloid mouse model of Alzheimer's disease
Alzheimer's Disease (AD) is a neurodegenerative disease characterized by two main pathological hallmarks: amyloid plaques and intracellular tau neurofibrillary tangles. However, a majority of studies focus on the individual pathologies and seldom on the interaction between the two pathologies. Herein, we present the longitudinal neuropathological and neurophysiological effects of a combined amyloid-tau model by hippocampal seeding of human-derived tau pathology in the APP.PS1/L166P amyloid animal model. We statistically assessed both neurophysiological and pathological changes using linear mixed modelling to determine if factors such as the age at which animals were seeded, genotype, seeding or buffer, brain region where pathology was quantified, and time-post injection differentially affect these outcomes. We report that AT8-positive tau pathology progressively develops and is facilitated by the amount of amyloid pathology present at the time of injection. The amount of AT8-positive tau pathology was influenced by the interaction of age at which the animal was injected, genotype, and time after injection. Baseline pathology-related power spectra and Higuchi Fractal Dimension (HFD) score alterations were noted in APP.PS1/L166P before any manipulations were performed, indicating a baseline difference associated with genotype. We also report immediate localized hippocampal dysfunction in the electroencephalography (EEG) power spectra associated with tau seeding which returned to comparable levels at 1 month-post-injection. Longitudinal effects of seeding indicated that tau-seeded wild-type mice showed an increase in gamma power earlier than buffer control comparisons which was influenced by the age at which the animal was injected. A reduction of hippocampal broadband power spectra was noted in tau-seeded wild-type mice, but absent in APP.PS1 animals. HFD scores appeared to detect subtle effects associated with tau seeding in APP.PS1 animals, which was differentially influenced by genotype. Notably, while tau histopathological changes were present, a lack of overt longitudinal electrophysiological alterations was noted, particularly in APP.PS1 animals that feature both pathologies after seeding, reiterating and underscoring the difficulty and complexity associated with elucidating physiologically relevant and translatable biomarkers of Alzheimer's Disease at the early stages of the disease
Remote assessment of disease and relapse in major depressive disorder (RADAR-MDD): a multi-centre prospective cohort study protocol
BACKGROUND: There is a growing body of literature highlighting the role that wearable and mobile remote measurement technology (RMT) can play in measuring symptoms of major depressive disorder (MDD). Outcomes assessment typically relies on self-report, which can be biased by dysfunctional perceptions and current symptom severity. Predictors of depressive relapse include disrupted sleep, reduced sociability, physical activity, changes in mood, prosody and cognitive function, which are all amenable to measurement via RMT. This study aims to: 1) determine the usability, feasibility and acceptability of RMT; 2) improve and refine clinical outcome measurement using RMT to identify current clinical state; 3) determine whether RMT can provide information predictive of depressive relapse and other critical outcomes. METHODS: RADAR-MDD is a multi-site prospective cohort study, aiming to recruit 600 participants with a history of depressive disorder across three sites: London, Amsterdam and Barcelona. Participants will be asked to wear a wrist-worn activity tracker and download several apps onto their smartphones. These apps will be used to either collect data passively from existing smartphone sensors, or to deliver questionnaires, cognitive tasks, and speech assessments. The wearable device, smartphone sensors and questionnaires will collect data for up to 2-years about participants' sleep, physical activity, stress, mood, sociability, speech patterns, and cognitive function. The primary outcome of interest is MDD relapse, defined via the Inventory of Depressive Symptomatology- Self-Report questionnaire (IDS-SR) and the World Health Organisation's self-reported Composite International Diagnostic Interview (CIDI-SF). DISCUSSION: This study aims to provide insight into the early predictors of major depressive relapse, measured unobtrusively via RMT. If found to be acceptable to patients and other key stakeholders and able to provide clinically useful information predictive of future deterioration, RMT has potential to change the way in which depression and other long-term conditions are measured and managed. KEYWORDS: M-health; Major depressive disorder; Observational cohort; Outcome measurement; Passive sensing; Prospective study; Remote measurement technolog
Early Electrophysiological Disintegration of Hippocampal Neural Networks in a Novel Locus Coeruleus Tau-Seeding Mouse Model of Alzheimer’s Disease
Alzheimer’s disease (AD) is a progressive, neurodegenerative disease characterized by loss of synapses and disrupted functional connectivity (FC) across different brain regions. Early in AD progression, tau pathology is found in the locus coeruleus (LC) prior to amyloid-induced exacerbation of clinical symptoms. Here, a tau-seeding model in which preformed synthetic tau fibrils (K18) were unilaterally injected into the LC of P301L mice, equipped with multichannel electrodes for recording EEG in frontal cortical and CA1-CA3 hippocampal areas, was used to longitudinally quantify over 20 weeks of functional network dynamics in (1) power spectra; (2) FC using intra- and intersite phase-amplitude theta-gamma coupling (PAC); (3) coherence, partial coherence, and global coherent network efficiency (Eglob) estimates; and (4) the directionality of functional connectivity using extended partial direct coherence (PDC). A sustained leftward shift in the theta peak frequency was found early in the power spectra of hippocampal CA1 networks ipsilateral to the injection site. Strikingly, hippocampal CA1 coherence and Eglob measures were impaired in K18-treated animals. Estimation of instantaneous EEG amplitudes revealed deficiency in the propagation directionality of gamma oscillations in the CA1 circuit. Impaired PAC strength evidenced by decreased modulation of the theta frequency phase on gamma frequency amplitude further confirms impairments of the neural CA1 network. The present results demonstrate early dysfunctional hippocampal networks, despite no spreading tau pathology to the hippocampus and frontal cortex. The ability of the K18 seed in the brainstem LC to elicit such robust functional alterations in distant hippocampal structures in the absence of pathology challenges the classic view that tau pathology spread to an area is necessary to elicit functional impairments in that area
In Vivo Plasticity at Hippocampal Schaffer Collateral-CA1 Synapses: Replicability of the LTP Response and Pharmacology in the Long-Evans Rat
Broad issues associated with non-replicability have been described in experimental pharmacological and behavioral cognitive studies. Efforts to prevent biases that contribute to non-replicable scientific protocols and to improve experimental rigor for reproducibility are increasingly seen as a basic requirement for the integrity of scientific research. Synaptic plasticity, encompassing long-term potentiation (LTP), is believed to underlie mechanisms of learning and memory. The present study was undertaken in Long-Evans (LE) rats, a strain of rat commonly used in cognitive behavioral tests, to (1) compare three LTP tetanisation protocols, namely, the high-frequency stimulation (HFS), the theta-burst stimulation (TBS), and the paired-pulse facilitation (PPF) at the Schaffer collateral-CA1 stratum radiatum synapse and to (2) assess sensitivity to acute pharmacology. Results: (1) When compared to Sprague-Dawley (SD) rats, the HFS using a stimulus intensity of 50% of the maximum slope obtained from input/output (I/O) curves elicited lower and higher thresholds of synaptic plasticity responses in SD and LE rats, respectively. The 2-train TBS protocol significantly enhanced the LTP response in LE rats over the 5- and 10-train TBS protocols in both strains, and the 5×TBS protocol inducing a subthreshold LTP response was used in subsequent pharmacological studies in LE rats. The PPF protocol, investigating the locus of the LTP response, showed no difference for the selected interstimulus intervals. (2) Scopolamine, a nonspecific muscarinic antagonist, had a subtle effect, whereas donepezil, an acetylcholinesterase inhibitor, significantly enhanced the LTP response, demonstrating the sensitivity of the TBS protocol to enhanced cholinergic tone. MK-801, a noncompetitive N-methyl-D-aspartate (NMDA) antagonist, significantly reduced LTP response, while memantine, another NMDA antagonist, had no effect on LTP response, likely associated with a weaker TBS protocol. PQ10, a phosphodiesterase-10 inhibitor, significantly enhanced the TBS-induced LTP response, but did not change the PPF response. Overall, the results confirm the strain-dependent differences in the form of synaptic plasticity, replicate earlier plasticity results, and report effective protocols that generate a relatively subthreshold margin of LTP induction and maintenance, which are suitable for pharmacology in the LE rat strain mainly used in cognitive studies
Aging Alters Olfactory Bulb Network Oscillations and Connectivity: Relevance for Aging-Related Neurodegeneration Studies
The aging process eventually cause a breakdown in critical synaptic plasticity and connectivity leading to deficits in memory function. The olfactory bulb (OB) and the hippocampus, both regions of the brain considered critical for the processing of odors and spatial memory, are commonly affected by aging. Using an aged wild-type C57B/6 mouse model, we sought to define the effects of aging on hippocampal plasticity and the integrity of cortical circuits. Specifically, we measured the long-term potentiation of high-frequency stimulation (HFS-LTP) at the Shaffer-Collateral CA1 pyramidal synapses. Next, local field potential (LFP) spectra, phase-amplitude theta-gamma coupling (PAC), and connectivity through coherence were assessed in the olfactory bulb, frontal and entorhinal cortices, CA1, and amygdala circuits. The OB of aged mice showed a significant increase in the number of histone H2AX-positive neurons, a marker of DNA damage. While the input-output relationship measure of basal synaptic activity was found not to differ between young and aged mice, a pronounced decline in the slope of field excitatory postsynaptic potential (fEPSP) and the population spike amplitude (PSA) were found in aged mice. Furthermore, aging was accompanied by deficits in gamma network oscillations, a shift to slow oscillations, reduced coherence and theta-gamma PAC in the OB circuit. Thus, while the basal synaptic activity was unaltered in older mice, impairment in hippocampal synaptic transmission was observed only in response to HFS. However, age-dependent alterations in neural network appeared spontaneously in the OB circuit, suggesting the neurophysiological basis of synaptic deficits underlying olfactory processing. Taken together, the results highlight the sensitivity and therefore potential use of LFP quantitative network oscillations and connectivity at the OB level as objective electrophysiological markers that will help reveal specific dysfunctional circuits in aging-related neurodegeneration studies
Pathological and neurophysiological outcomes of seeding human-derived tau pathology in the APP-KI NL-G-F and NL-NL mouse models of Alzheimer’s Disease
The two main histopathological hallmarks that characterize Alzheimer’s Disease are the presence of amyloid plaques and neurofibrillary tangles. One of the current approaches to studying the consequences of amyloid pathology relies on the usage of transgenic animal models that incorporate the mutant humanized form of the amyloid precursor protein (hAPP), with animal models progressively developing amyloid pathology as they age. However, these mice models generally overexpress the hAPP protein to facilitate the development of amyloid pathology, which has been suggested to elicit pathological and neuropathological changes unrelated to amyloid pathology. In this current study, we characterized APP knock-in (APP-KI) animals, that do not overexpress hAPP but still develop amyloid pathology to understand the influence of protein overexpression. We also induced tau pathology via human-derived tau seeding material to understand the neurophysiological effects of amyloid and tau pathology. We report that tau-seeded APP-KI animals progressively develop tau pathology, exacerbated by the presence of amyloid pathology. Interestingly, older amyloid-bearing, tau-seeded animals exhibited more amyloid pathology in the entorhinal area, isocortex and hippocampus, but not thalamus, which appeared to correlate with impairments in gamma oscillations before seeding. Tau-seeded animals also featured immediate deficits in power spectra values and phase-amplitude indices in the hippocampus after seeding, with gamma power spectra deficits persisting in younger animals. Both deficits in hippocampal phase-amplitude coupling and gamma power differentiate tau-seeded, amyloid-positive animals from buffer controls. Based on our results, impairments in gamma oscillations appear to be strongly associated with the presence and development of amyloid and tau pathology, and may also be an indicator of neuropathology, network dysfunction, and even potential disposition to the future development of amyloid pathology
Charge exchange
The differential cross sections of the charge exchange reaction has been measured at 1.75 GeV/c per nucleon for small transferred momenta using the one arm magnetic spectrometer STRELA at the Nuclotron accelerator in JINR Dubna. The ratio of the differential cross section of the charge exchange reaction to that of the elementary process is discussed in order to estimate the spin-dependent part of the charge exchange amplitude. The amplitude turned out to be predominantly spin-dependent
Emergence of early alterations in network oscillations and functional connectivity in a tau seeding mouse model of Alzheimer’s disease pathology
Abstract Synaptic dysfunction and disconnectivity are core deficits in Alzheimer’s disease (AD), preceding clear changes in histopathology and cognitive functioning. Here, the early and late effects of tau pathology induction on functional network connectivity were investigated in P301L mice. Multichannel EEG oscillations were used to compute (1) coherent activity between the prefrontal cortex (PFC) and hippocampus (HPC) CA1-CA3 networks; (2) phase-amplitude cross frequency coupling (PAC) between theta and gamma oscillations, which is instrumental in adequate cognitive functioning; (3) information processing as assessed by auditory evoked potentials and oscillations in the passive oddball mismatch negativity-like (MMN) paradigm. At the end, the density of tau aggregation and GABA parvalbumin (PV+) interneurons were quantified by immunohistochemistry. Early weakening of EEG theta oscillations and coherent activity were revealed between the PFC and HPC CA1 and drastic impairments in theta–gamma oscillations PAC from week 2 onwards, while PV+ interneurons count was not altered. Moreover, the tau pathology disrupted the MMN complex amplitude and evoked gamma oscillations to standard and deviant stimuli suggesting altered memory formation and recall. The induction of intracellular tau aggregation by tau seed injection results in early altered connectivity and strong theta–gamma oscillations uncoupling, which may be exploited as an early electrophysiological signature of dysfunctional neuronal networks