6 research outputs found

    Effects of Constitutive and Acute Connexin 36 Deficiency on Brain-Wide Susceptibility to PTZ-Induced Neuronal Hyperactivity

    No full text
    © Copyright © 2021 Brunal, Clark, Ma, Woods and Pan. Connexins are transmembrane proteins that form hemichannels allowing the exchange of molecules between the extracellular space and the cell interior. Two hemichannels from adjacent cells dock and form a continuous gap junction pore, thereby permitting direct intercellular communication. Connexin 36 (Cx36), expressed primarily in neurons, is involved in the synchronous activity of neurons and may play a role in aberrant synchronous firing, as seen in seizures. To understand the reciprocal interactions between Cx36 and seizure-like neural activity, we examined three questions: (a) does Cx36 deficiency affect seizure susceptibility, (b) does seizure-like activity affect Cx36 expression patterns, and (c) does acute blockade of Cx36 conductance increase seizure susceptibility. We utilize the zebrafish pentylenetetrazol [PTZ; a GABA(A) receptor antagonist] induced seizure model, taking advantage of the compact size and optical translucency of the larval zebrafish brain to assess how PTZ affects brain-wide neuronal activity and Cx36 protein expression. We exposed wild-type and genetic Cx36-deficient (cx35.5-/-) zebrafish larvae to PTZ and subsequently mapped neuronal activity across the whole brain, using phosphorylated extracellular-signal-regulated kinase (pERK) as a proxy for neuronal activity. We found that cx35.5-/- fish exhibited region-specific susceptibility and resistance to PTZ-induced hyperactivity compared to wild-type controls, suggesting that genetic Cx36 deficiency may affect seizure susceptibility in a region-specific manner. Regions that showed increased PTZ sensitivity include the dorsal telencephalon, which is implicated in human epilepsy, and the lateral hypothalamus, which has been underexplored. We also found that PTZ-induced neuronal hyperactivity resulted in a rapid reduction of Cx36 protein levels within 30 min. This Cx36 reduction persists after 1-h of recovery but recovered after 3–6 h. This acute downregulation of Cx36 by PTZ is likely maladaptive, as acute pharmacological blockade of Cx36 by mefloquine results in increased susceptibility to PTZ-induced neuronal hyperactivity. Together, these results demonstrate a reciprocal relationship between Cx36 and seizure-associated neuronal hyperactivity: Cx36 deficiency contributes region-specific susceptibility to neuronal hyperactivity, while neuronal hyperactivity-induced downregulation of Cx36 may increase the risk of future epileptic events

    Altered Functional Connectivity within and between Brain Modules in Absence Epilepsy: A Resting-State Functional Magnetic Resonance Imaging Study

    Get PDF
    Functional connectivity has been correlated with a patient’s level of consciousness and has been found to be altered in several neuropsychiatric disorders. Absence epilepsy patients, who experience a loss of consciousness, are assumed to suffer from alterations in thalamocortical networks; however, previous studies have not explored the changes at a functional module level. We used resting-state functional magnetic resonance imaging to examine the alteration in functional connectivity that occurs in absence epilepsy patients. By parcellating the brain into 90 brain regions/nodes, we uncovered an altered functional connectivity within and between functional modules. Some brain regions had a greater number of altered connections and therefore behaved as key nodes in the changed network pattern; these regions included the superior frontal gyrus, the amygdala, and the putamen. In particular, the superior frontal gyrus demonstrated both an increased value of connections with other nodes of the frontal default mode network and a decreased value of connections with the limbic system. This divergence is positively correlated with epilepsy duration. These findings provide a new perspective and shed light on how functional connectivity and the balance of within/between module connections may contribute to both the state of consciousness and the development of absence epilepsy

    Predictors of smoking cessation outcomes identified by machine learning: A systematic review

    No full text
    This systematic review aims to characterize the utility of machine learning to identify the predictors of smoking cessation outcomes and identify the machine learning methods applied in this area. In the current study, multiple searches occurred through December 9, 2022 in MEDLINE, Science Citation Index, Social Science Citation Index, EMBASE, CINAHL Plus, APA PsycINFO, PubMed, Cochrane Central Register of Controlled Trials, and the IEEE Xplore were performed. Inclusion criteria included various machine learning techniques, studies reporting cigarette smoking cessation outcomes (smoking status and the number of cigarettes), and various experimental designs (e.g., cross-sectional and longitudinal). Predictors of smoking cessation outcomes were assessed, including behavioral markers, biomarkers, and other predictors. Our systematic review identified 12 papers fitting our inclusion criteria. In this review, we identified gaps in knowledge and innovation opportunities for machine learning research in the field of smoking cessation

    Zebrafish dscaml1 Deficiency Impairs Retinal Patterning and Oculomotor Function

    No full text
    D own S yndrome C ell A dhesion M olecules ( dscam and dscaml1 ) are essential regulators of neural circuit assembly, but their roles in vertebrate neural circuit function are still mostly unexplored. We investigated the functional consequences of dscaml1 deficiency in the larval zebrafish (sexually undifferentiated) oculomotor system, where behavior, circuit function, and neuronal activity can be precisely quantified. Genetic perturbation of dscaml1 resulted in deficits in retinal patterning and light adaptation, consistent with its known roles in mammals. Oculomotor analyses revealed specific deficits related to the dscaml1 mutation, including severe fatigue during gaze stabilization, reduced saccade amplitude and velocity in the light, greater disconjugacy, and impaired fixation. Two-photon calcium imaging of abducens neurons in control and dscaml1 mutant animals confirmed deficits in saccade-command signals (indicative of an impairment in the saccadic premotor pathway), while abducens activation by the pretectum-vestibular pathway was not affected. Together, we show that loss of dscaml1 resulted in impairments in specific oculomotor circuits, providing a new animal model to investigate the development of oculomotor premotor pathways and their associated human ocular disorders. SIGNIFICANCE STATEMENT Dscaml1 is a neural developmental gene with unknown behavioral significance. Using the zebrafish model, this study shows that dscaml1 mutants have a host of oculomotor (eye movement) deficits. Notably, the oculomotor phenotypes in dscaml1 mutants are reminiscent of human ocular motor apraxia, a neurodevelopmental disorder characterized by reduced saccade amplitude and gaze stabilization deficits. Population-level recording of neuronal activity further revealed potential subcircuit-specific requirements for dscaml1 during oculomotor behavior. These findings underscore the importance of dscaml1 in the development of visuomotor function and characterize a new model to investigate potential circuit deficits underlying human oculomotor disorders
    corecore