236 research outputs found

    Molecular imaging in nanomedical research

    Get PDF
    For years, nanomedical research has represented a challenge and an opportunity in terms of imaging techniques [...]

    Histochemistry for nanomedicine: novelty in tradition

    Get PDF
    During the last two centuries, histochemistry has provided significant advancements in many fields of life sciences. After a period of neglect due to the great development of biomolecular techniques, the histochemical approach has been reappraised and is now widely applied in the field of nanomedicine. In fact, the novel nanoconstructs intended for biomedical purposes must be visualized to test their interaction with tissue and cell components. To this aim, several long-established staining methods have been re-discovered and re-interpreted in an unconventional way for unequivocal identification of nanoparticulates at both light and transmission electron microscopy

    Histological and histochemical methods - theory and practice

    Get PDF
    Histological and Histochemical Methods by Professor John A. Kiernan is a classic in the histochemical literature since its first edition, in 1981....

    Nanoparticle-based techniques for bladder cancer imaging: a review

    Get PDF
    Bladder cancer is very common in humans and is often characterized by recurrences, compromising the patient's quality of life with a substantial social and economic impact. Both the diagnosis and treatment of bladder cancer are problematic due to the exceptionally impermeable barrier formed by the urothelium lining the bladder; this hinders the penetration of molecules via intravesical instillation while making it difficult to precisely label the tumor tissue for surgical resection or pharmacologic treatment. Nanotechnology has been envisaged as an opportunity to improve both the diagnostic and therapeutic approaches for bladder cancer since the nanoconstructs can cross the urothelial barrier and may be functionalized for active targeting, loaded with therapeutic agents, and visualized by different imaging techniques. In this article, we offer a selection of recent experimental applications of nanoparticle-based imaging techniques, with the aim of providing an easy and rapid technical guide for the development of nanoconstructs to specifically detect bladder cancer cells. Most of these applications are based on the well-established fluorescence imaging and magnetic resonance imaging currently used in the medical field and gave positive results on bladder cancer models in vivo, thus opening promising perspectives for the translation of preclinical results to the clinical practice

    Molecular and structural alterations of skeletal muscle tissue nuclei during aging

    Get PDF
    Aging is accompanied by a progressive loss of skeletal muscle mass and strength. The mechanisms underlying this phenomenon are certainly multifactorial and still remain to be fully elucidated. Changes in the cell nucleus structure and function have been considered among the possible contributing causes. This review offers an overview of the current knowledge on skeletal muscle nuclei in aging, focusing on the impairment of nuclear pathways potentially involved in age-related muscle decline. In skeletal muscle two types of cells are present: fiber cells, constituting the contractile muscle mass and containing hundreds of myonuclei, and the satellite cells, i.e., the myogenic mononuclear stem cells occurring at the periphery of the fibers and responsible for muscle growth and repair. Research conducted on different experimental models and with different methodological approaches demonstrated that both the myonuclei and satellite cell nuclei of aged skeletal muscles undergo several structural and molecular alterations, affecting chromatin organization, gene expression, and transcriptional and post-transcriptional activities. These alterations play a key role in the impairment of muscle fiber homeostasis and regeneration, thus contributing to the age-related decrease in skeletal muscle mass and function

    Satellite cells in skeletal muscle of the hibernating dormouse, a natural model of quiescence and re-activation: focus on the cell nucleus

    Get PDF
    Satellite cells (SCs) participate in skeletal muscle plasticity/regeneration. Activation of SCs implies that nuclear changes underpin a new functional status. In hibernating mammals, periods of reduced metabolic activity alternate with arousals and resumption of bodily functions, thereby leading to repeated cell deactivation and reactivation. In hibernation, muscle fibers are preserved despite long periods of immobilization. The structural and functional characteristics of SC nuclei during hibernation have not been investigated yet. Using ultrastructural and immunocytochemical analysis, we found that the SCs of the hibernating edible dormouse, Glis glis, did not show apoptosis or necrosis. Moreover, their nuclei were typical of quiescent cells, showing similar amounts and distributions of heterochromatin, pre-mRNA transcription and processing factors, as well as paired box protein 7 (Pax7) and the myogenic differentiation transcription factor D (MyoD), as in euthermia. However, the finding of accumulated perichromatin granules (i.e., sites of storage/transport of spliced pre-mRNA) in SC nuclei of hibernating dormice suggested slowing down of the nucleus-to-cytoplasm transport. We conclude that during hibernation, SC nuclei maintain similar transcription and splicing activity as in euthermia, indicating an unmodified status during immobilization and hypometabolism. Skeletal muscle preservation during hibernation is presumably not due to SC activation, but rather to the maintenance of some functional activity in myofibers that is able to counteract muscle wasting

    Ultrastructural histochemistry in biomedical research: Alive and kicking

    Get PDF
    The high-resolution images provided by the electron microscopy has constituted a limitless source of information in any research field of life and materials science since the early Thirties of the last century. Browsing the scientific literature, electron microscopy was especially popular from the 1970’s to 80’s, whereas during the 90’s, with the advent of innovative molecular techniques, electron microscopy seemed to be downgraded to a subordinate role, as a merely descriptive technique. Ultrastructural histochemistry was crucial to promote the Renaissance of electron microscopy, when it became evident that a precise localization of molecules in the biological environment was necessary to fully understand their functional role. Nowadays, electron microscopy is still irreplaceable for ultrastructural morphology in basic and applied biomedical research, while the application of correlative light and electron microscopy and of refined ultrastructural histochemical techniques gives electron microscopy a central role in functional cell and tissue biology, as a really unique tool for high-resolution molecular biology in situ

    Transmission electron microscopy for nanomedicine: novel applications for long-established techniques

    Get PDF
    During the last twenty years, the research in nanoscience and nanotechnology has dramatically increased and, in the last decade, the interest has progressively been oriented towards biomedical applications, giving rise to a new field termed nanomedicine. Transmis - sion electron microscopy is a valuable technique not only for the thorough physico-chemical characterization of newly synthesized nanoparticulates, but especially to explore the effects of nanocomposites on biological systems, providing essential information for the development of efficient therapeutic and diagnostic strategies. Thus, for the progress of nanotechnology in the biomedical field, experts in cell biology, histochemistry and ultramicroscopy should always support the chemists, physicists and pharmacologists engaged in the synthesis and characterization of innovative nanoconstructs

    Embedding cell monolayers to investigate nanoparticle-plasmalemma interactions at transmission electron microscopy

    Get PDF
    Transmission electron microscopy is the technique of choice to visualize the spatial relationships between nanoconstructs and cells and especially to monitor the uptake process of nanomaterials. It is therefore crucial that the cell surface be preserved in its integrity, to obtain reliable ultrastructural evidence: the plasmalemma represents the biological barrier the nanomaterials have to cross, and the mode of membrane-nanoconstruct interaction is responsible for the intracellular fate of the nanomaterials. In this paper, we describe a simple and inexpensive method to process cell monolayers for ultrastructural morphology and immunocytochemistry, ensuring consistent preservation of the cell surface and of the occurring interactions with nanoparticles of different chemical composition
    • …
    corecore