19 research outputs found
Heat-shock pretreatment inhibits sorbitol-induced apoptosis in K562, U937 and HeLa cells.
The aim of this study was to determine whether heat-shock pretreatment
exerted a protective effect against sorbitol-induced apoptotic
cell death in K562, U937 and HeLa cell lines and whether
such protection was associated with a decreased cytochrome c
release from mithocondria and a decreased activation of caspase-9
and -3. Following heat-shock pretreatment (42 6 0.3C for 1 hr),
these cell lines were exposed to sorbitol for 1 hr. Apoptosis was evaluated
by DNA fragmentation, whereas caspase-9,-3 activation, cytochrome
c release and heat-shock protein70 (HSP70) were assayed
by Western Blot. Sorbitol exposure-induced apoptosis in these different
cell lines with a marked activation of caspase-9 and caspase-
3, whereas heat-shock pretreatment before sorbitol exposure,
induced expression of HSP70 and inhibited sorbitol-mediated cytochrome
c release and subsequent activation of caspase-9 and caspase-
3. Similarly, overexpression of HSP70 in the three cell lines
studied prevented caspase-9 cleavage and activation as well as cell
death. Furthermore, we showed that the mRNA expression of iNOS
decreased during both the heat-shock treatment and heat-shock
pretreatment before sorbitol exposure. By contrast, the expression
of Cu-Zn superoxide dismutase (SOD) and Mn-SOD proteins
increased during heat-shock pretreatment before sorbitol exposure.
We conclude that, heat-shock pretreatment protects different cell
lines against sorbitol-induced apoptosis through a mechanism that
is likely to involve SOD family members
ERK-1 MAP kinase prevents TNF-induced apoptosis through bad phosphorylation and inhibition of bax translocation in HeLa cells
Extracellular signal-regulated kinase (ERK) 1/2 signaling is involved in tumor cell survival through the regulation of Bcl-2 family members. To explore this further and to demonstrate the central role of the mitochondria in the ERK1/2 pathway we used the HeLa cellular model where apoptosis was induced by tumor necrosis factor (TNF) and cycloheximide (CHX). We show that HeLa cells overexpressing ERK-1 displayed resistance to TNF and CHX. HeLa cells overexpressing a kinase-deficient form of ERK-1 (K71R) were more sensitive to TNF and CHX. In the ERK-1 cells, Bad was phosphorylated during TNF + CHX treatment. In the HeLa wt cells and in the K71R clones TNF and CHX decreased Bad phosphorylation. ERK-1 cells treated with TNF and CHX did not release cytochrome c from the mitochondria. By contrast, HeLa wt and K71R clones released cytochrome c. Bax did not translocate to the mitochondria in ERK-1 cells treated with TNF + CHX. Conversely, HeLa wt and K71R clones accumulated Bax in the mitochondria. In the HeLa wt cells and in both ERK-1 transfectants Bid was cleaved and accumulated in the mitochondria. The caspase-8 inhibitor IETD-FMK and the mitochondrial membrane permeabilization inhibitor bongkrekic acid (BK), partially prevented cell death by TNF + CHX. Anisomycin, a c-Jun N-terminal kinases activator, increased TNF-killing. The ERK-1 cells were resistant to TNF and anisomycin, whereas K71R clones resulted more sensitive. Our study demonstrates that in HeLa cells the ERK-1 kinase prevents TNF + CHX apoptosis by regulating the intrinsic mitochondrial pathway through different mechanisms. Inhibition of the intrinsic pathway is sufficient to almost completely prevent cell death. © 2009 Wiley-Liss, Inc
HPLC/HRMS and GC/MS for Triacylglycerols Characterization of Tuna Fish Oils Obtained from Green Extraction
Background: Fish oil is one of the most common lipidic substances that is consumed as a dietary supplement. The high omega-3 fatty acid content in fish oil is responsible for its numerous health benefits. Fish species such as mackerel, herring, tuna, and salmon are particularly rich in these lipids, which contain two essential omega-3 fatty acids, known as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Objectives: Due to the scarcity of information in the literature, this study aimed to conduct a qualitative and quantitative characterization of triglycerides (TAGs) in crude tuna fish oil using HPLC/HRMS. Fatty acid (FA) determination was also performed using GC/MS. The tuna fish oils analyzed were produced using a green, low-temperature process from the remnants of fish production, avoiding the use of any extraction solvents. Results: The analyses led to the tentative identification and semi-quantitation of 81 TAGs. In silico saponification and comparison with fatty acid methyl ester results helped to confirm the identified TAGs and their quantities. The study found that the produced oil is rich in EPA, DHA, and erucic acid, while the negligible isomerization of fatty acids to trans-derivatives was observed
The effect of marathon on mRNA expression of anti-apoptotic and pro-apoptotic proteins and sirtuins family in male recreational long-distance runners
<p>Abstract</p> <p>Background</p> <p>A large body of evidence shows that a single bout of strenuous exercise induces oxidative stress in circulating human lymphocytes leading to lipid peroxidation, DNA damage, mitochondrial perturbations, and protein oxidation.</p> <p>In our research, we investigated the effect of physical load on the extent of apoptosis in primary cells derived from blood samples of sixteen healthy amateur runners after marathon (a.m.).</p> <p>Results</p> <p>Blood samples were collected from ten healthy amateur runners peripheral blood mononuclear cells (PBMCs) were isolated from whole blood and bcl-2, bax, heat shock protein (HSP)70, Cu-Zn superoxide dismutase (SOD), Mn-SOD, inducible nitric oxide synthase (i-NOS), SIRT1, SIRT3 and SIRT4 (Sirtuins) RNA levels were determined by Northern Blot analysis. Strenuous physical load significantly increased HSP70, HSP32, Mn-SOD, Cu-Zn SOD, iNOS, GADD45, bcl-2, forkhead box O (FOXO3A) and SIRT1 expression after the marathon, while decreasing bax, SIRT3 and SIRT4 expression (P < 0.0001).</p> <p>Conclusion</p> <p>These data suggest that the physiological load imposed in amateur runners during marathon attenuates the extent of apoptosis and may interfere with sirtuin expression.</p
Elevated Serum Levels of Osteopontin in HCV-Associated Lymphoproliferative Disorders.
Hepatitis C virus (HCV) infection is associated with chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Recent evidences have also suggested that HCV infection contributes to development of autoimmune disorders and B-cell nonHodgkin's lymphoma (NHL). Mechanisms by which HCV infection promotes B-cell NHL development remain unclear. Increased serum osteopontin (OPN) levels have been associated with several autoimmune diseases as well as a variety of cancers. However, the association between OPN and B-cell NHL or HCV-associated B-cell proliferation has not previously been reported. In the present study, we determined whether serum OPN differences were associated with HCV infection, type II mixed cryglobulinemia (MC) syndrome and B-cell NHL. Serum OPN levels were measured by capture enzyme-linked immunosorbent assay. Our results show that high serum OPN levels are associated with B-cell NHL and HCV infection. Interestingly, highest serum OPN concentrations were found among HCV-infected patients with concomitant type II MC syndrome with and without B-cell NHL. These data indicate that OPN is involved in the lymphomagenesis, especially, in the context of HCV infection and autoimmune diseases
Defective Function of the Fas Apoptotic Pathway in Type 1 Diabetes Mellitus Correlates with Age at Onset
The Fas death receptor triggers lymphocyte apoptosis through an extrinsic and an intrinsic pathway involving caspase-8 and -9 respectively. Inherited defects of Fas function are displayed by a proportion of patients with Type 1 diabetes mellitus (T1DM) especially those with a second autoimmunity (T1DM-p). This study assesses activation of both pathways in Fas-resistant (FasR) patients to localize the defect. 21/28 (75%) T1DM-p, 14/50 (38%) T1DM, and 7/150 (5%) controls were FasR. Analysis of the 35 FasR patients and 20 Fas-sensitive (FasS) controls showed that caspase-9 activity was lower in T1DM-p and T1DM than in controls, whereas caspase-8 activity was lower in T1DM-p than in T1DM and the controls. Single patient analysis showed that 16/35 patients displayed defective activity of one (FasR1), whereas 19 displayed normal activity of both caspases (FasR2) Ages at onset of diabetes mellitus in T1DM and the second autoimmune disease in T1DM-p were lower in FasR than in FasS patients. All FasR1 patients developed diabetes mellitus before the age of 9 years, whereas a later onset was displayed by 26% FasR2 and 53% FasS patients. These data show that defective Fas function may involve both the extrinsic and intrinsic pathway in T1DM and severity correlates with the precocity of the autoimmune attack and its tissue polyreactivity
Kaempferol Induces Apoptosis in Two Different Cell Lines Via Akt Inactivation, Bax and SIRT3 Activation, and Mitochondrial Dysfunction
Kaempferol (3,4',5,7-tetrahydroxyflavone) is a flavonoid with anti- and pro-oxidant activity present in various natural sources. Kaempferol has been shown to posses anticancer properties through the induction of the apoptotic program. Here we report that treatment of the chronic myelogenous leukemia cell line KG62 and promyelocitic human leukemia U937 with 50 mu M kaempferol resulted in an increase of the antioxidant enzymes Mn and Cu/Zn superoxide dismutase (SOD). Kaempferol treatment induced apoptosis by decreasing the expression of Bcl-2 and increasing the expressions of Bax. There were also induction of mitochondrial release of cytochrome c into cytosol and significant activation of caspase-3, and -9 with PARP cleavage. Kaempferol treatment increased the expression and the mitochondria localization of the NAD-dependent deacetylase SIRT3. K562 cells stably overexpressing SIRT3 were more sensitive to kaempferol, whereas SIRT3 silencing did not increase the resistance or K562 cells to kaempferol. Inhibition of PI3K and de-phosphorylation of Akt at Ser473 and Thr308 was also observed after treating both K562 and U937 cells with kaempferol. In conclusion our study shows that the oxidative stress induced by kaempferol in K562 and U937 cell lines causes the inactivation of Akt and the activation of the mitochondrial phase of the apoptotic program with an increase of Bax and SIRT3, decrease of Bcl-2, release of cytochrome c, caspase-3 activation, and cell death. J. Cell. Biochem. 106: 643-650, 2009. (C) 2009 Wiley-Liss, Inc
FragClust and TestClust, two informatics tools for chemical structure hierarchical clustering analysis applied to lipidomics. The example of Alzheimer's disease
Lipidomic analysis is able to measure simultaneously thousands of compounds belonging to a few lipid classes. In each lipid class, compounds differ only by the acyl radical, ranging between C10:0 (capric acid) and C24:0 (lignoceric acid). Although some metabolites have a peculiar pathological role, more often compounds belonging to a single lipid class exert the same biological effect. Here, we present a lipidomics workflow that extracts the tandem mass spectrometry data from individual files and uses them to group compounds into structurally homogeneous clusters by chemical structure hierarchical clustering analysis (CHCA). The case-to-control peak area ratios of the metabolites are then analyzed within clusters. We created two freely available applications to assist the workflow: FragClust to generate the tables to be subjected to CHCA, and TestClust to perform statistical analysis on clustered data. We used the lipidomics data from the plasma of Alzheimer's disease (AD) patients in comparison with healthy controls to test the workflow. To date, the search for plasma biomarkers in AD has not provided reliable results. This article shows that the workflow is helpful to understand the behavior of whole lipid classes in plasma of AD patients. [Figure not available: see fulltext.