23,799 research outputs found

    New technique for replica symmetry breaking with application to the SK-model at and near T=0

    Full text link
    We describe a novel method which allows the treatment of high orders of replica-symmetry-breaking (RSB) at low temperatures as well as at T=0 directly, without a need for approximations or scaling assumptions. It yields the low temperature order function q(a,T) in the full range 0≤a<∞0\leq a <\infty and is complete in the sense that all observables can be calculated from it. The behavior of some observables and the finite RSB theory itself is analyzed as one approaches continuous RSB. The validity and applicability of the traditional continuous formulation is then scrutinized and a new continuous RSB formulation is proposed

    Entropy in Spin Foam Models: The Statistical Calculation

    Full text link
    Recently an idea for computing the entropy of black holes in the spin foam formalism has been introduced. Particularly complete calculations for the three dimensional euclidean BTZ black hole were done. The whole calculation is based on observables living at the horizon of the black hole universe. Departing from this idea of observables living at the horizon, we now go further and compute the entropy of BTZ black hole in the spirit of statistical mechanics. We compare both calculations and show that they are very interrelated and equally valid. This latter behaviour is certainly due to the importance of the observables.Comment: 11 pages, 1 figur

    Lattice two-body problem with arbitrary finite range interactions

    Full text link
    We study the exact solution of the two-body problem on a tight-binding one-dimensional lattice, with pairwise interaction potentials which have an arbitrary but finite range. We show how to obtain the full spectrum, the bound and scattering states and the "low-energy" solutions by very efficient and easy-to-implement numerical means. All bound states are proven to be characterized by roots of a polynomial whose degree depends linearly on the range of the potential, and we discuss the connections between the number of bound states and the scattering lengths. "Low-energy" resonances can be located with great precission with the methods we introduce. Further generalizations to include more exotic interactions are also discussed.Comment: 6 pages, 3 figure

    A generic persistence model for CLP systems (and two useful implementations)

    Get PDF
    This paper describes a model of persistence in (C)LP languages and two different and practically very useful ways to implement this model in current systems. The fundamental idea is that persistence is a characteristic of certain dynamic predicates (Le., those which encapsulate state). The main effect of declaring a predicate persistent is that the dynamic changes made to such predicates persist from one execution to the next one. After proposing a syntax for declaring persistent predicates, a simple, file-based implementation of the concept is presented and some examples shown. An additional implementation is presented which stores persistent predicates in an external datábase. The abstraction of the concept of persistence from its implementation allows developing applications which can store their persistent predicates alternatively in files or databases with only a few simple changes to a declaration stating the location and modality used for persistent storage. The paper presents the model, the implementation approach in both the cases of using files and relational databases, a number of optimizations of the process (using information obtained from static global analysis and goal clustering), and performance results from an implementation of these ideas
    • …
    corecore