141 research outputs found
Going to Extremes: Politics after Financial Crisis, 1870-2014
Partisan conflict and policy uncertainty are frequently invoked as factors contributing to slow post-crisis recoveries. Recent events in Europe provide ample evidence that the political aftershocks of financial crises can be severe. In this paper we study the political fall-out from systemic financial crises over the past 140 years. We construct a new long-run dataset covering 20 advanced economies and more than 800 general elections. Our key finding is that policy uncertainty rises strongly after financial crises as government majorities shrink and polarization rises. After a crisis, voters seem to be particularly attracted to the political rhetoric of the extreme right, which often attributes blame to minorities or foreigners. On average, far-right parties increase their vote share by 30% after a financial crisis. Importantly, we do not observe similar political dynamics in normal recessions or after severe macroeconomic shocks that are not financial in nature
HEPPA-II model-measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008-2009
Funke, B. et. al..--This work is distributed under the Creative Commons Attribution 3.0 License.We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80 km) atmospheric models with observations of odd nitrogen (NOx D NO+NO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3-D chemistry transport model 3dCTM, the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMO-NIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modelling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20 %. Larger discrepancies of a few model simulations could be traced back either to the impact of the models' gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In March-April, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too-fast and early downward propagation of the NO x tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2-0.05 hPa), likely caused by an overestimation of descent velocities. In contrast, upper-mesospheric temperatures (at 0.05-0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too-slow descent and hence too-low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with mediumtop models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of- the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions.
The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions.This work has been conducted in the frame of the WCRP/ SPARC SOLARIS-HEPPA activity. The IAA team was supported by the Spanish MCINN under grant ESP2014-54362-P and EC FEDER funds. The MPI-MET team was supported by the Max Planck Gesellschaft (MPG), and computational resources were made available by Deutsches Klimarechenzentrum (DKRZ) through support from Bundesministerium fur Bildung und Forschung (BMBF). The FMI team was supported by the Academy of Finland through the projects 276926 (SECTIC: Sun-Earth Connection Through Ion Chemistry), 258165, and 265005 (CLASP: Climate and Solar Particle Forcing). CAO team was supported by the Russian Science Foundation under grant 15-17-10024. SOCOL team was funded by Swiss National Science Foundation (SNSF) grants 200021-149182 (SILA), 200020-163206 (SIMA), and CRSII2-147659 (FUPSOL-II). S. Bender, M. Sinnhuber, and H. Nieder (all KIT) gratefully acknowledge funding by the Helmholtz Association of German Research Centres (HGF), grant VH-NG-624. NCAR is sponsored by the National Science Foundation (NSF). Computing resources for WACCM simulations were provided by the Climate Simulation Laboratory at NCAR's Computational and Information Systems Laboratory, sponsored by the NSF and other agencies. Work at the Jet Propulsion Laboratory, California Institute of Technology, was carried out under a contract with the National Aeronautics and Space Administration. The Atmospheric Chemistry Experiment (ACE), also known as SciSat, is a Canadian-led mission mainly supported by the Canadian Space Agency. Odin is a Swedish-led satellite project funded jointly by Sweden (SNSB), Canada (CSA), Finland (TEKES), and France (CNES) and is part of European Space Agency's (ESA) third-party mission program. We thank two anonymous reviewers for helpful suggestions that led to improvements in the quality of the present work.Peer reviewe
Retrieval of nitric oxide in the mesosphere and lower thermosphere from SCIAMACHY limb spectra
We use the ultra-violet (UV) spectra in the range 230-300 nm from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) to retrieve the nitric oxide (NO) number densities from atmospheric emissions in the gamma-bands in the mesosphere and lower thermosphere. Using 3-D ray tracing, a 2-D retrieval grid, and regularisation with respect to altitude and latitude, we retrieve a whole semi-orbit simultaneously for the altitude range from 60 to 160 km. We present details of the retrieval algorithm, first results, and initial comparisons to data from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Our results agree on average well with MIPAS data and are in line with previously published measurements from other instruments. For the time of available measurements in 2008-2011, we achieve a vertical resolution of 5-10 km in the altitude range 70-140 km and a horizontal resolution of about 9 from 60 S-60 N. With this we have independent measurements of the NO densities in the mesosphere and lower thermosphere with approximately global coverage. This data can be further used to validate climate models or as input for them. © 2013 Author(s).S. Bender and M. Sinnhuber thank the Helmholtz-society for funding this project under the grant number VH-NG-624. The IAA team (M. Lopez-Puertas and B. Funke) was supported by the Spanish MINECO under grant AYA2011-23552 and EC FEDER funds. The SCIAMACHY project was funded by German Aerospace (DLR), the Dutch Space Agency, SNO, and the Belgium ministry. ESA funded the Envisat project. The University of Bremen as Principal Investigator has led the scientific support and development of SCIAMACHY and the scientific exploitation of its data products. We acknowledge support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe Institute of Technology.Peer Reviewe
Variability of NOx in the polar middle atmosphere from October 2003 to March 2004: Vertical transport vs. local production by energetic particles
We use NO, NO2 and CO from MIPAS/ENVISAT to investigate the impact of energetic particle precipitation onto the NOx budget from the stratosphere to the lower mesosphere in the period from October 2003 to March 2004, a time of high solar and geomagnetic activity. We find that in the winter hemisphere the indirect effect of auroral electron precipitation due to downwelling of upper mesospheric/lower thermospheric air into the stratosphere prevails. Its effect exceeds even the direct impact of the very large solar proton event in October/November 2003 by nearly 1 order of magnitude. Correlations of NOx and CO show that the unprecedented high NOx values observed in the Northern Hemisphere lower mesosphere and upper stratosphere in late January and early February are fully consistent with transport from the upper mesosphere/lower thermosphere and subsequent mixing at lower altitudes. In the polar summer Southern Hemisphere, we observed an enhanced variability of NO and NO2 on days with enhanced geomagnetic activity, but this seems to indicate enhanced instrument noise rather than a direct increase due to electron precipitation. A direct effect of electron precipitation onto NOx can not be ruled out, but, if any, it is lower than 3 ppbv in the altitude range 40-56 km and lower than 6 ppbv in the altitude range 56-64 km. An additional significant source of NOx due to local production by precipitating electrons below 70 km exceeding several parts per billion as discussed in previous publications appears unlikely. © Author(s) 2014.M. Sinnhuber gratefully acknowledges funding by the Helmholtz Society HGF (contract VH-NG-624). The IAA team was supported by the Spanish MINECO under grant AYA2011-23552 and EC FEDER funds. We acknowledge support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe Institute of Technology.Peer Reviewe
Energetic particle precipitation: A major driver of the ozone budget in the Antarctic upper stratosphere
Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at high southern latitudes, late winter ozone series, covering the 1979-2014 period, exhibit an average stratospheric depletion of about 10-15% on a monthly basis caused by EPP. Daily observations indicate that every austral winter EPP-induced low ozone concentrations appear at about 45 km in late June and descend later to 30 km, before disappearing by September. Such stratospheric variations are coupled with mesospheric ozone changes also driven by EPP. No significant correlation between these ozone variations and solar ultraviolet irradiance has been found. This suggests the need of including the EPP forcing in both ozone model simulations and trend analysis.
©2016. American Geophysical Union. All Rights Reserved.The present study was supported by the SOUSEI program, MEXT, JAPAN. The IAA team was supported by the Spanish MINECO under grant ESP2014-54362-P and EC FEDER funds. Work at the Jet Propulsion Laboratory, California Institute of Technology, was done under contract with NASA. The Chilean team was supported by FONDECYT (1140239)Peer Reviewe
Aerosols and Water Ice in Jupiter's Stratosphere from UV-NIR Ground-based Observations
Jupiter's atmosphere has been sounded in transmission from the UV to the IR, as if it were a transiting exoplanet, by observing Ganymede while passing through Jupiter's shadow. The spectra show strong extinction due to the presence of aerosols and haze in Jupiter's atmosphere and strong absorption features of methane. Here, we report a new detailed analysis of these observations, with special emphasis on the retrievals of the vertical distribution of the aerosols and their sizes, and the properties and distribution of the stratospheric water ice. Our analysis suggests the presence of aerosols near the equator in the altitude range of 100 hPa up to at least 0.01 hPa, with a layer of small particles (mean radius of 0.1 μm) in the upper part (above 0.1 hPa), an intermediate layer of aerosols with a radius of 0.3 μm, extending between ∼10 and 0.01 hPa, and a layer with larger sizes of ∼0.6 μm at approximately 100-1 hPa. The corresponding loads for each layer are ∼2 × 10 g cm, ∼3.4 × 10 g cm, and ∼1.5 × 10 g cm, respectively, with a total load of ∼2.0 × 10 g cm. The lower and middle layers agree well with previous measurements; but the finer particles of 0.1 μm above 0.01 hPa have not been reported before. The spectra also show two broad features near 1.5 and 2.0 μm, which we attribute to a layer of very small (∼10 nm) HO crystalline ice in Jupiter's lower stratosphere (∼0.5 hPa). While these spectral signatures seem to be unequivocally attributable to crystalline water ice, they require a large amount of water ice to explain the strong absorption features.© 2018. The American Astronomical Society. All rights reserved.We are very grateful to Rafael Escribano, Victor Herrero, Anni Maattanen, Beatriz Mate, Agustin Sanchez-Lavega, and Miguel Angel Satorre for very valuable discussions on the water ice topic. The IAA team was supported by the Spanish MICINN under projects ESP2014-54362-P, ESP2017-87143-R, and EC FEDER funds. This work is also partly financed by the Spanish Ministry of Economics and Competitiveness through grant ESP2013-48391-C4-2-R. M.G.C. is also supported by the MINECO under its >Ramon y Cajal> subprogram
Modulation of Antarctic stratospheric ozone induced by energetic particle precipitation in 2005-2014
第6回極域科学シンポジウム分野横断型セッション:[IM] 横断 中層大気・熱圏11月17日(火) 国立極地研究所1階交流アトリウ
- …