2,856 research outputs found

    Design of a cross-slot flow channel for extensional viscosity measurements

    Get PDF
    In this work we present an algorithm for optimal shape design of viscoelastic fluid flow. A finite-volume viscoelastic code is coupled with the CONDOR optimizer [1] and an automated mesh generation and adaptation procedure, in order to find the shape of a given flow geometry, capable of achieving optimal performance. As an example of application we design an optimized cross-slot microfluidic chip appropriate for measuring the extensional viscosity of dilute polymeric solutions. The microfluidic cross-slot flow geometry is able to generate homogeneous elongational flow with regions of constant strain-rate, a requirement to produce meaningful rheological measurements

    Optimized cross-slot flow geometry for microfluidic extension rheometry

    Get PDF
    A precision-machined cross-slot flow geometry with a shape that has been optimized by numerical simulation of the fluid kinematics is fabricated and used to measure the extensional viscosity of a dilute polymer solution. Full-field birefringence microscopy is used to monitor the evolution and growth of macromolecular anisotropy along the stagnation point streamline, and we observe the formation of a strong and uniform birefringent strand when the dimensionless flow strength exceeds a critical Weissenberg number Wicrit 0:5. Birefringence and bulk pressure drop measurements provide self consistent estimates of the planar extensional viscosity of the fluid over a wide range of deformation rates (26 s1 "_ 435 s1) and are also in close agreement with numerical simulations performed by using a finitely extensible nonlinear elastic dumbbell model

    Serpentine channels: micro -- rheometers for fluid relaxation times

    Get PDF
    We propose a novel device capable of measuring the relaxation time of viscoelastic fluids as small as 1\,ms. In contrast to most rheometers, which by their very nature are concerned with producing viscometric or nearly-viscometric flows, here we make use of an elastic instability which occurs in the flow of viscoelastic fluids with curved streamlines. To calibrate the rheometer we combine simple scaling arguments with relaxation times obtained from first normal-stress difference data measured in a classical shear rheometer. As an additional check we also compare these relaxation times to those obtained from Zimm theory and good agreement is observed. Once calibrated, we show how the serpentine rheometer can be used to access smaller polymer concentrations and lower solvent viscosities where classical measurements become difficult or impossible to use due to inertial and/or resolution limitations. In the absence of calibration the serpentine channel can still be a very useful comparative or index device.Comment: accepted for for publication in Lab on a chi

    Nanogel formation of polymer solutions flowing through porous media

    Get PDF
    A gelation process was seen to occur when Boger fluids made from aqueous solutions of polyacrylamide (PAA) and NaCl flowed through porous media with certain characteristics. As these viscoelastic fluids flow through a porous medium, the pressure drop across the bed varies linearly with the flow rate, as also happens with Newtonian fluids. Above a critical flow rate, elastic effects set in and the pressure drop grows above the low-flow-rate linear regime. Increasing further the flow rate, a more dramatic increase in the slope of the pressure drop curve can be observed as a consequence of nanogel formation. In this work, we discuss the reasons for this gelation process based on our measurements using porous media of different sizes, porosity and chemical composition. Additionally, the rheological properties of the fluids were investigated for shear and extensional flows. The fluids were also tested as they flowed through different microfluidic analogues of the porous media. The results indicate that the nanogel inception occurs with the adsorption of PAA molecules on the surface of the porous media particles that contain silica on their surfaces. Subsequently, if the interparticle space is small enough a jamming process occurs leading to flow-induced gel formation

    The role of bacteria in pine wilt disease: insights from microbiome analysis.

    Get PDF
    Pine Wilt Disease (PWD) has a significant impact on Eurasia pine forests. The microbiome of the nematode (the primary cause of the disease), its insect vector, and the host tree may be relevant for the disease mechanism. The aim of this study was to characterize these microbiomes, from three PWD-affected areas in Portugal, using Denaturing Gradient Gel Electrophoresis, 16S rRNA gene pyrosequencing, and a functional inference-based approach (PICRUSt). The bacterial community structure of the nematode was significantly different from the infected trees but closely related to the insect vector, supporting the hypothesis that the nematode microbiome might be in part inherited from the insect. Sampling location influenced mostly the tree microbiome (P < 0.05). Genes related both with plant growth promotion and phytopathogenicity were predicted for the tree microbiome. Xenobiotic degradation functions were predicted in the nematode and insect microbiomes. Phytotoxin biosynthesis was also predicted for the nematode microbiome, supporting the theory of a direct contribution of the microbiome to tree-wilting. This is the first study that simultaneously characterized the nematode, tree and insect-vector microbiomes from the same affected areas, and overall the results support the hypothesis that the PWD microbiome plays an important role in the disease's development

    Rheology of vitreous humour and pharmacological substitutes used in the treatment of vitreoretinal pathologies

    Get PDF
    Vitreoretinal pathologies are the second leading cause of blindness worldwide. They can be caused by age-related changes in vitreous humour (VH) or as a consequence of some diseases that lead to rheological, biochemical and structural rearrangements. So far, the most effective treatment for these diseases is the injection of a VH substitute in the vitreous cavity. These substances can be used intra- operatively to push a detached retina into its normal position, to restore the volume of the vitreous cavity, and to help surgeons in membrane dissection. The major vitreous substitutes commercially available are silicone oils and perfluorocarbon liquids, but currently there is little information about the rheological properties of these fluids, that are intimately linked to their functionality. The aim of this work is to compare the rheological properties of the VH and five commercial vitreous substitutes currently used in vitreoretinal surgeries. Six fluids were analysed: VH extracted from New Zealand white rabbit specimen, three silicone oils (RS-Oil1000 and RS-Oil5000, Alchimia and Siluron 2000, Fluoron), two perfluorocarbon liquids (HPF8 and HPF10, Alchimia) and a mixture of silicone oil with perfluorocarbon (Densiron68, Fluoron). Extensional measurements were performed with a capillary break-up extensional rheometer (Haake CaBER1, ThermoElectron) and an in-house extensional rheometer. The steady shear and small amplitude oscillatory shear measurements (SAOS) were performed with a hybrid rheometer (DHR-2, TA Instruments). Our results show that VH substitutes used for same purpose exhibit significantly different rheological properties between them and when compared with the VH. Vitreous humour shows viscoelastic behaviour and all the pharmacological fluids tested display a Newtonian-like behaviour in steady shear flow with viscosities varying from 0.49 mPa s to 4.57 Pa s, at 37°C

    Rheological behaviour of vitreous humour

    Get PDF
    The vitreous humour (VH) is a complex biofluid that occupies a large portion of the eyeball between the lens and the retina, and exhibits non-Newtonian rheological properties that are key for its function in the eye. It is often possible to distinguish two different phases in VH, known as liquid and gel phases (Sebag, 1987). In this work, we present a detailed rheological characterisation of the two phases of the VH under shear and extensional flow conditions. Healthy New Zealand rabbit eyes were used to measure the surface tension and the shear and extensional rheological properties of VH in different phase conformations and at different times after dissection. The results show that VH liquid phase exhibits a surface tension of 47.8 mN/m, a shear thinning behaviour reaching a viscosity plateau around 10-3 Pa.s for shear rates above 1000 s-1, and an average relaxation time of 9.7 ms in extensional flow. Interestingly, both VH phases present higher storage modulus than loss modulus and the measurements performed with VH gel phase 4±1 hours after dissection exhibit the highest moduli values. The compliance measurements for the gel phase show a viscoelastic gel behaviour and that compliance values decrease substantially with time after dissection. Our results show that the two VH phases exhibit viscoelastic behaviour, but with distinct rheological characteristics, consistent with a gel phase mostly composed of collagen entangled by hyaluronan and a second phase mainly composed of hyaluronan in aqueous solution

    Reinfection with SARS-CoV-2: An inconvenient truth?

    Get PDF
    Data show that antibody-related immunity against SARS-CoV-2 may not be long-lasting. We report two cases regarded as cured from COVID-19, which presented again with symptoms and a positive SARS-CoV-2 RT-PCR test. Case one, a 60-year-old male, had a biphasic presentation of symptoms compatible with COVID-19 infection, associated with a positive RT-PCR test. Case two, a 25-year-old female, had a first positive RT-PCR test during hospital screening, and months later a symptomatic presentation of COVID-19, associated with a positive RT-PCR test. All cases were immunocompetent. Anti-IgG-SARS-CoV-2 blood samples were negative in both. Elevation of analytical inflammatory markers suggested new infection in both cases. COVID-19 reinfection may be a differential diagnosis and primary care physicians should acknowledge it. Previously cured patients should be encouraged to comply with health public preventive measures
    corecore