90 research outputs found

    The NMDA receptor functions independently and as an LRP1 co-receptor to promote Schwann cell survival and migration

    Get PDF
    NMDA Receptors (NMDA-Rs) are ionotropic glutamate receptors, which associate with LDL Receptor-related Protein-1 (LRP1) to trigger cell-signaling in response to protein ligands in neurons. Herein, we demonstrate for the first time that the NMDA-R is expressed by rat Schwann cells (SCs) and functions independently and with LRP1 to regulate SC physiology. The NR1 and NR2b NMDA-R subunits were expressed by cultured SCs and up-regulated in sciatic nerves following crush injury. The ability of LRP1 ligands to activate ERK1/2 and promote SC migration required the NMDA-R. NR1 gene-silencing compromised SC survival. Injection of the LRP1 ligands, tissue-type plasminogen activator (tPA) or MMP9-PEX, into crush-injured sciatic nerves, activated ERK1/2 in SCs in vivo and the response was blocked by systemic treatment with the NMDA-R inhibitor, MK801. tPA was unique amongst the LRP1 ligands examined because tPA activated cell-signaling and promoted SC migration by interacting with the NMDA-R independently of LRP1, albeit with delayed kinetics. These results define the NMDA-R as a SC signaling receptor for protein ligands and a major regulator of SC physiology, which may be particularly important in PNS injury

    Expression of LDL receptor-related proteins (LRPs) in common solid malignancies correlates with patient survival

    Get PDF
    LDL receptor-related proteins (LRPs) are transmembrane receptors involved in endocytosis, cell-signaling, and trafficking of other cellular proteins. Considerable work has focused on LRPs in the fields of vascular biology and neurobiology. How these receptors affect cancer progression in humans remains largely unknown. Herein, we mined provisional data-bases in The Cancer Genome Atlas (TCGA) to compare expression of thirteen LRPs in ten common solid malignancies in patients. Our first goal was to determine the abundance of LRP mRNAs in each type of cancer. Our second goal was to determine whether expression of LRPs is associated with improved or worsened patient survival. In total, data from 4,629 patients were mined. In nine of ten cancers studied, the most abundantly expressed LRP was LRP1; however, a correlation between LRP1 mRNA expression and patient survival was observed only in bladder urothelial carcinoma. In this malignancy, high levels of LRP1 mRNA were associated with worsened patient survival. High levels of LDL receptor (LDLR) mRNA were associated with decreased patient survival in pancreatic adenocarcinoma. High levels of LRP10 mRNA were associated with decreased patient survival in hepatocellular carcinoma, lung adenocarcinoma, and pancreatic adenocarcinoma. LRP2 was the only LRP for which high levels of mRNA expression correlated with improved patient survival. This correlation was observed in renal clear cell carcinoma. Insights into LRP gene expression in human cancers and their effects on patient survival should guide future research

    LDL receptor-related protein-1 regulates NFκB and microRNA-155 in macrophages to control the inflammatory response

    Get PDF
    LDL receptor-related protein-1 (LRP1) is an endocytic and cell-signaling receptor. In mice in which LRP1 is deleted in myeloid cells, the response to lipopolysaccharide (LPS) was greatly exacerbated. LRP1 deletion in macrophages in vitro, under the control of tamoxifen-activated Cre-ER(T) fusion protein, robustly increased expression of proinflammatory cytokines and chemokines. In LRP1-expressing macrophages, proinflammatory mediator expression was regulated by LRP1 ligands in a ligand-specific manner. The LRP1 agonists, α2-macroglobulin and tissue-type plasminogen activator, attenuated expression of inflammatory mediators, even in the presence of LPS. The antagonists, receptor-associated protein (RAP) and lactoferrin (LF), and LRP1-specific antibody had the entirely opposite effect, promoting inflammatory mediator expression and mimicking LRP1 deletion. NFκB was rapidly activated in response to RAP and LF and responsible for the initial increase in expression of proinflammatory mediators. RAP and LF also significantly increased expression of microRNA-155 (miR-155) after a lag phase of about 4 h. miR-155 expression reflected, at least in part, activation of secondary cell-signaling pathways downstream of TNFα. Although miR-155 was not involved in the initial induction of cytokine expression in response to LRP1 antagonists, miR-155 was essential for sustaining the proinflammatory response. We conclude that LRP1, NFκB, and miR-155 function as members of a previously unidentified system that has the potential to inhibit or sustain inflammation, depending on the continuum of LRP1 ligands present in the macrophage microenvironment
    corecore