208 research outputs found

    Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: role of glucose and ketone bodies

    Get PDF
    BACKGROUND: The high fat, low carbohydrate ketogenic diet (KD) was developed as an alternative to fasting for seizure management. While the mechanisms by which fasting and the KD inhibit seizures remain speculative, alterations in brain energy metabolism are likely involved. We previously showed that caloric restriction (CR) inhibits seizure susceptibility by reducing blood glucose in the epileptic EL mouse, a natural model for human multifactorial idiopathic epilepsy. In this study, we compared the antiepileptic and anticonvulsant efficacy of the KD with that of CR in adult EL mice with active epilepsy. EL mice that experienced at least 15 recurrent complex partial seizures were fed either a standard diet unrestricted (SD-UR) or restricted (SD-R), and either a KD unrestricted (KD-UR) or restricted (KD-R). All mice were fasted for 14 hrs prior to diet initiation. A new experimental design was used where each mouse in the diet-restricted groups served as its own control to achieve a 20–23% body weight reduction. Seizure susceptibility, body weights, and the levels of plasma glucose and β-hydroxybutyrate were measured once/week over a nine-week treatment period. RESULTS: Body weights and blood glucose levels remained high over the testing period in the SD-UR and the KD-UR groups, but were significantly (p < 0.001) reduced in the SD-R and KD-R groups. Plasma β-hydroxybutyrate levels were significantly (p < 0.001) increased in the SD-R and KD-R groups compared to their respective UR groups. Seizure susceptibility remained high in both UR-fed groups throughout the study, but was significantly reduced after three weeks in both R-fed groups. CONCLUSIONS: The results indicate that seizure susceptibility in EL mice is dependent on plasma glucose levels and that seizure control is more associated with the amount than with the origin of dietary calories. Also, CR underlies the antiepileptic and anticonvulsant action of the KD in EL mice. A transition from glucose to ketone bodies for energy is predicted to manage EL epileptic seizures through multiple integrated changes of inhibitory and excitatory neural systems

    The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer

    Get PDF
    BACKGROUND: Malignant brain cancer persists as a major disease of morbidity and mortality in adults and is the second leading cause of cancer death in children. Many current therapies for malignant brain tumors fail to provide long-term management because they ineffectively target tumor cells while negatively impacting the health and vitality of normal brain cells. In contrast to brain tumor cells, which lack metabolic flexibility and are largely dependent on glucose for growth and survival, normal brain cells can metabolize both glucose and ketone bodies for energy. This study evaluated the efficacy of KetoCal(®), a new nutritionally balanced high fat/low carbohydrate ketogenic diet for children with epilepsy, on the growth and vascularity of a malignant mouse astrocytoma (CT-2A) and a human malignant glioma (U87-MG). METHODS: Adult mice were implanted orthotopically with the malignant brain tumors and KetoCal(® )was administered to the mice in either unrestricted amounts or in restricted amounts to reduce total caloric intake according to the manufacturers recommendation for children with refractory epilepsy. The effects KetoCal(® )on tumor growth, vascularity, and mouse survival were compared with that of an unrestricted high carbohydrate standard diet. RESULTS: KetoCal(® )administered in restricted amounts significantly decreased the intracerebral growth of the CT-2A and U87-MG tumors by about 65% and 35%, respectively, and significantly enhanced health and survival relative to that of the control groups receiving the standard low fat/high carbohydrate diet. The restricted KetoCal(® )diet reduced plasma glucose levels while elevating plasma ketone body (β-hydroxybutyrate) levels. Tumor microvessel density was less in the calorically restricted KetoCal(® )groups than in the calorically unrestricted control groups. Moreover, gene expression for the mitochondrial enzymes, β-hydroxybutyrate dehydrogenase and succinyl-CoA: 3-ketoacid CoA transferase, was lower in the tumors than in the contralateral normal brain suggesting that these brain tumors have reduced ability to metabolize ketone bodies for energy. CONCLUSION: The results indicate that KetoCal(® )has anti-tumor and anti-angiogenic effects in experimental mouse and human brain tumors when administered in restricted amounts. The therapeutic effect of KetoCal(® )for brain cancer management was due largely to the reduction of total caloric content, which reduces circulating glucose required for rapid tumor growth. A dependency on glucose for energy together with defects in ketone body metabolism largely account for why the brain tumors grow minimally on either a ketogenic-restricted diet or on a standard-restricted diet. Genes for ketone body metabolism should be useful for screening brain tumors that could be targeted with calorically restricted high fat/low carbohydrate ketogenic diets. This preclinical study indicates that restricted KetoCal(® )is a safe and effective diet therapy and should be considered as an alternative therapeutic option for malignant brain cancer

    Inhibition of HIV-1 infectivity and epithelial cell transfer by human monoclonal IgG and IgA antibodies carrying the b12 V region

    Get PDF
    Both IgG and secretory IgA Abs in mucosal secretions have been implicated in blocking the earliest events in HIV-1 transit across epithelial barriers, although the mechanisms by which this occurs remain largely unknown. In this study, we report the production and characterization of a human rIgA(2) mAb that carries the V regions of IgG1 b12, a potent and broadly neutralizing anti-gp120 Ab which has been shown to protect macaques against vaginal simian/HIV challenge. Monomeric, dimeric, polymeric, and secretory IgA(2) derivatives of b12 reacted with gp120 and neutralized CCR5- and CXCR4-tropic strains of HIV-1 in vitro. With respect to the protective effects of these Abs at mucosal surfaces, we demonstrated that IgG1 b12 and IgA(2) b12 inhibited the transfer of cell-free HIV-1 from ME-180 cells, a human cervical epithelial cell line, as well as Caco-2 cells, a human colonic epithelial cell line, to human PBMCs. Inhibition of viral transfer was due to the ability of b12 to block both viral attachment to and uptake by epithelial cells. These data demonstrate that IgG and IgA MAbs directed against a highly conserved epitope on gp120 can interfere with the earliest steps in HIV-1 transmission across mucosal surfaces, and reveal a possible mechanism by which b12 protects the vaginal mucosal against viral challenge in vivo

    Studying Cat (Felis catus) Diabetes: Beware of the Acromegalic Imposter

    Get PDF
    Naturally occurring diabetes mellitus (DM) is common in domestic cats (Felis catus). It has been proposed as a model for human Type 2 DM given many shared features. Small case studies demonstrate feline DM also occurs as a result of insulin resistance due to a somatotrophinoma. The current study estimates the prevalence of hypersomatotropism or acromegaly in the largest cohort of diabetic cats to date, evaluates clinical presentation and ease of recognition. Diabetic cats were screened for hypersomatotropism using serum total insulin-like growth factor-1 (IGF-1; radioimmunoassay), followed by further evaluation of a subset of cases with suggestive IGF-1 (>1000 ng/ml) through pituitary imaging and/ or histopathology. Clinicians indicated pre-test suspicion for hypersomatotropism. In total 1221 diabetic cats were screened; 319 (26.1%) demonstrated a serum IGF-1>1000 ng/ml (95% confidence interval: 23.6-28.6%). Of these cats a subset of 63 (20%) underwent pituitary imaging and 56/63 (89%) had a pituitary tumour on computed tomography; an additional three on magnetic resonance imaging and one on necropsy. These data suggest a positive predictive value of serum IGF-1 for hypersomatotropism of 95% (95% confidence interval: 90-100%), thus suggesting the overall hypersomatotropism prevalence among UK diabetic cats to be 24.8% (95% confidence interval: 21.2-28.6%). Only 24% of clinicians indicated a strong pre-test suspicion; most hypersomatotropism cats did not display typical phenotypical acromegaly signs. The current data suggest hypersomatotropism screening should be considered when studying diabetic cats and opportunities exist for comparative acromegaly research, especially in light of the many detected communalities with the human disease

    Structure of RiVax: a recombinant ricin vaccine

    Get PDF
    The X-ray crystal structure (at 2.1 Å resolution) of an immunogen under development as part of a ricin vaccine for humans is presented and structure-based analysis of the results was conducted with respect to related proteins and the known determinants for inducing or suppressing the protective immune response

    Loss of tolerance to gut immunity protein; glycoprotein 2 (GP2) is associated with progressive disease course in primary sclerosing cholangitis

    Get PDF
    Abstract Glycoprotein 2[GP2] is a specific target of pancreatic autoantibodies[PAbs] in Crohn’s disease(CD) and is involved in gut innate immunity processes. Our aim was to evaluate the prevalence and prognostic potential of PAbs in primary sclerosing cholangitis(PSC). Sixty-five PSC patients were tested for PAbs by indirect immunofluorescence and compared with healthy (n = 100) and chronic liver disease controls(CLD, n = 488). Additionally, a panel of anti-microbial antibodies and secretory (s)IgA levels were measured, as markers of bacterial translocation and immune dysregulation. PAbs were more frequent in PSC(46.2%) compared to controls(healthy:0% and CLD:4.5%), [P < 0.001, for each]. Occurrence of anti-GP2 antibody was 30.8% (20/65) and was exclusively of IgA isotype. Anti-GP2 IgA positive patients had higher sIgA levels (P = 0.021). With flow-cytometry, 68.4% (13/19) of anti-GP2 IgA antibodies were bound with secretory component, suggesting an active retro-transportation of anti-GP2 from the gut lumen to the mucosa. Anti-GP2 IgA was associated with shorter transplant-free survival [PLogRank < 0.01] during the prospective follow-up (median, IQR: 87 [9–99] months) and remained an independent predictor after adjusting for Mayo risk score(HR: 4.69 [1.05–21.04], P = 0.043). These results highlight the significance of gut-liver interactions in PSC. Anti-GP2 IgA might be a valuable tool for risk stratification in PSC and considered as a potential therapeutic target

    Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium

    Get PDF
    The transcytosis of antigens across the gut epithelium by microfold cells (M cells) is important for the induction of efficient immune responses to some mucosal antigens in Peyer’s patches. Recently, substantial progress has been made in our understanding of the factors that influence the development and function of M cells. This review highlights these important advances, with particular emphasis on: the host genes which control the functional maturation of M cells; how this knowledge has led to the rapid advance in our understanding of M-cell biology in the steady-state and during aging; molecules expressed on M cells which appear to be used as “immunosurveillance” receptors to sample pathogenic microorganisms in the gut; how certain pathogens appear to exploit M cells to infect the host; and finally how this knowledge has been used to specifically target antigens to M cells to attempt to improve the efficacy of mucosal vaccines

    Sensory Perception of Food and Insulin-Like Signals Influence Seizure Susceptibility

    Get PDF
    Food deprivation is known to affect physiology and behavior. Changes that occur could be the result of the organism's monitoring of internal and external nutrient availability. In C. elegans, male mating is dependent on food availability; food-deprived males mate with lower efficiency compared to their well-fed counterparts, suggesting that the mating circuit is repressed in low-food environments. This behavioral response could be mediated by sensory neurons exposed to the environment or by internal metabolic cues. We demonstrated that food-deprivation negatively regulates sex-muscle excitability through the activity of chemosensory neurons and insulin-like signaling. Specifically, we found that the repressive effects of food deprivation on the mating circuit can be partially blocked by placing males on inedible food, E. coli that can be sensed but not eaten. We determined that the olfactory AWC neurons actively suppress sex-muscle excitability in response to food deprivation. In addition, we demonstrated that loss of insulin-like receptor (DAF-2) signaling in the sex muscles blocks the ability of food deprivation to suppress the mating circuit. During low-food conditions, we propose that increased activity by specific olfactory neurons (AWCs) leads to the release of neuroendocrine signals, including insulin-like ligands. Insulin-like receptor signaling in the sex muscles then reduces cell excitability via activation of downstream molecules, including PLC-γ and CaMKII
    corecore