95 research outputs found

    Five omic technologies are concordant in differentiating the biochemical characteristics of the berries of five grapevine (Vitis vinifera L.) cultivars

    Get PDF

    [Deep Brain Stimulation & CBT: a winning team?]

    No full text

    Cognitive-behavioural therapy augments the effects of deep brain stimulation in obsessive-compulsive disorder

    No full text
    Deep brain stimulation (DBS) is a promising new treatment for patients with treatment-refractory obsessive-compulsive disorder (OCD). However, since most DBS patients only show a partial response, the treatment still needs to be improved. In this study we hypothesized that cognitive-behavioural therapy (CBT) could optimize the post-operative management in DBS and we evaluated the efficacy of CBT as augmentation to DBS targeted at the nucleus accumbens. A total of 16 patients with treatment-refractory OCD were treated with DBS targeted at the nucleus accumbens. After stabilization of decline in OCD symptoms, a standardized 24-week CBT treatment programme was added to DBS in an open-phase trial of 8 months. Changes in obsessive-compulsive, anxiety and depressive symptoms were evaluated using the Yale-Brown Obsessive Compulsive Scale, Hamilton Anxiety Scale and Hamilton Rating Scale for Depression. Following the addition of CBT to DBS, a significant decrease in obsessive-compulsive symptoms was observed, but not in anxiety and depressive symptoms. In a subsequent double-blind phase, in which stimulation was discontinued, OCD symptoms returned to baseline (relapse) and anxiety and depressive symptoms worsened (rebound) compared with baseline. The results of this explorative study suggest that a combined treatment of accumbens DBS and CBT may be optimal for improving obsessive-compulsive symptoms in treatment-refractory OCD. However, a subsequent randomized controlled trial is necessary to draw firm conclusions. It seems that DBS results in affective changes that may be required to enable response prevention in CBT. This may indicate that DBS and CBT act as two complementary treatment

    Cognitive functioning in psychiatric disorders following deep brain stimulation.

    No full text
    Deep brain stimulation (DBS) is routinely used as a treatment for treatment-refractory Parkinson's disease and has recently been proposed for psychiatric disorders such as Tourette syndrome (TS), obsessive-compulsive disorder (OCD) and major depressive disorder (MDD). Although cognitive deterioration has repeatedly been shown in patients with Parkinson's disease following DBS, the impact of DBS on cognitive functioning in psychiatric patients has not yet been reviewed. Reviewing the available literature on cognitive functioning following DBS in psychiatric patients. A systematic literature search in PubMed, EMBASE and Web of Science, last updated in September 2012, found 1470 papers. Abstracts were scrutinized and 26 studies examining cognitive functioning of psychiatric patients following DBS were included on basis of predetermined inclusion criteria. Twenty-six studies reported cognitive functioning of 130 psychiatric patients following DBS (37 TS patients, 56 OCD patients, 28 MDD patients, 6 patients with Alzheimer's disease, and 3 patients with other disorders). None of the studies reported substantial cognitive decline following DBS. On the contrary, 13 studies reported cognitive improvement following DBS. Preliminary results suggest that DBS in psychiatric disorders does not lead to cognitive decline. In selected cases cognitive functioning was improved following DBS. However, cognitive improvement cannot be conclusively attributed to DBS since studies are hampered by serious limitations. We discuss the outcomes in light of these limitations and offer suggestions for future wor

    Conducting Polymer Iongels Based on PEDOT and Guar Gum

    No full text
    Conducting polymer hydrogels are attracting much interest in biomedical and energy-storage devices due to their unique electrochemical properties including their ability to conduct both electrons and ions. They suffer, however, from poor stability due to water evaporation, which causes the loss of mechanical and ion conduction properties. Here we show for the first time a conducting polymer gel where the continuous phase is a nonvolatile ionic liquid. The novel conducting iongel is formed by a natural polysaccharide (guar gum), a conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT), and an ionic liquid (IL) 1-butyl-3-methylimidazolium chloride (BMIMCl). First, an aqueous dispersion of PEDOT:guar gum is synthesized by an oxidative polymerization process of EDOT in the presence of the polysaccharide as stabilizer. The resulting PEDOT:guar gum was isolated as a powder by removing the water via freeze-drying process. In the final step, conducting iongels were prepared by the PEDOT:guar gum mixed with the ionic liquid by a heating-cooling process. The rheological properties show that the material exhibits gel type behavior between 20 and 80 °C. Interestingly, the conducting polymer iongel presents redox properties as well as high ionic conductivities (10-2 S cm-1). This material presents a unique combination of properties by mixing the electronic conductivity of PEDOT, the ionic conductivity and negligible vapor pressure of the ionic liquid and the support and flexibility given by guar gum
    corecore