27 research outputs found

    Quantification of Hepatic Organic Anion Transport Proteins OAT2 and OAT7 in Human Liver Tissue and Primary Hepatocytes

    No full text
    Organic anion transporter (OAT) 2 and OAT7 were recently shown to be involved in the hepatic uptake of drugs; however, there is limited understanding of the population variability in the expression of these transporters in liver. There is also a need to derive relative expression-based scaling factors (REFs) that can be used to bridge in vitro functional data to the in vivo drug disposition. To this end, we quantified OAT2 and OAT7 surrogate peptide abundance in a large number of human liver tissue samples (<i>n</i> = 52), as well as several single-donor cryopreserved human hepatocyte lots (<i>n</i> = 30) by a novel, validated liquid chromatography tandem mass spectrometry (LC–MS/MS) method. The average surrogate peptide expression of OAT2 and OAT7 in the liver samples was 1.52 ± 0.57 and 4.63 ± 1.58 fmol/μg membrane protein, respectively. While we noted statistically significant differences (<i>p</i> < 0.05) in hepatocyte and liver tissue abundances for both OAT2 and OAT7, the differences were relatively small (1.8- and 1.5-fold difference in median values, respectively). Large interindividual variability was noted in the hepatic expression of OAT2 (16-fold in liver tissue and 23-fold in hepatocytes). OAT7, on the other hand, showed less interindividual variability (4-fold) in the livers, but high variability for the hepatocyte lots (27-fold). A significant positive correlation in OAT2 and OAT7 expression was observed, but expression levels were neither associated with age nor sex. In conclusion, our data suggest marked interindividual variability in the hepatic expression of OAT2/7, which may contribute to the pharmacokinetic variability of their substrates. Because both transporters were less abundant in hepatocytes than livers, a REF-based approach is recommended when scaling in vitro hepatocyte transport data to predict hepatic drug clearance and liver exposure of OAT2/7 substrates

    Hepatic Disposition of Gemfibrozil and Its Major Metabolite Gemfibrozil 1‑<i>O</i>‑β-Glucuronide

    No full text
    Gemfibrozil (GEM), which decreases serum triglycerides and low density lipoprotein, perpetrates drug–drug interactions (DDIs) with several drugs. These DDIs are primarily attributed to the inhibition of drug transporters and metabolic enzymes, particularly cytochrome P450 (CYP) 2C8 by the major circulating metabolite gemfibrozil 1-<i>O</i>-β-glucuronide (GG). Here, we characterized the transporter-mediated hepatic disposition of GEM and GG using sandwich-cultured human hepatocytes (SCHH) and transporter-transfect systems. Significant active uptake was noted in SCHH for the metabolite. GG, but not GEM, showed substrate affinity to organic anion transporting polypeptide (OATP) 1B1, 1B3, and 2B1. In SCHH, glucuronidation was characterized affinity constants (<i>K</i><sub>m</sub>) of 7.9 and 61.4 μM, and biliary excretion of GG was observed. Furthermore, GG showed active basolateral efflux from preloaded SCHH and ATP-dependent uptake into membrane vesicles overexpressing multidrug resistance-associated protein (MRP) 2, MRP3, and MRP4. A mathematical model was developed to estimate hepatic uptake and efflux kinetics of GEM and GG based on SCHH studies. Collectively, the hepatic transporters play a key role in the disposition and thus determine the local concentrations of GEM and more so for GG, which is the predominant inhibitory species against CYP2C8 and OATP1B1

    Role of Hepatic Organic Anion Transporter 2 in the Pharmacokinetics of <i>R</i>- and <i>S</i>‑Warfarin: In Vitro Studies and Mechanistic Evaluation

    No full text
    Interindividual variability in warfarin dose requirement demands personalized medicine approaches to balance its therapeutic benefits (anticoagulation) and bleeding risk. Cytochrome P450 2C9 (<i>CYP2C9</i>) genotype-guided warfarin dosing is recommended in the clinic, given the more potent <i>S</i>-warfarin is primarily metabolized by CYP2C9. However, only about 20–30% of interpatient variability in <i>S</i>-warfarin clearance is associated with <i>CYP2C9</i> genotype. We evaluated the role of hepatic uptake in the clearance of <i>R</i>- and <i>S</i>-warfarin. Using stably transfected HEK293 cells, both enantiomers were found to be substrates of organic anion transporter (OAT)­2 with a Michaelis–Menten constant (<i>K</i><sub>m</sub>) of ∼7–12 μM but did not show substrate affinity for other major hepatic uptake transporters. Uptake of both enantiomers by primary human hepatocytes was saturable (<i>K</i><sub>m</sub> ≈ 7–10 μM) and inhibitable by OAT2 inhibitors (e.g., ketoprofen) but not by OATP1B1/1B3 inhibitors (e.g., cyclosporine). To further evaluate the potential role of hepatic uptake in <i>R</i>- and <i>S</i>-warfarin pharmacokinetics, mechanistic modeling and simulations were conducted. A “bottom-up” PBPK model, developed assuming that OAT2–CYPs interplay, well recovered clinical pharmacokinetics, drug–drug interactions, and <i>CYP2C9</i> pharmacogenomics of <i>R</i>- and <i>S</i>-warfarin. Clinical data were not available to directly verify the impact of OAT2 modulation on warfarin pharmacokinetics; however, the bottom-up PBPK model simulations suggested a proportional change in clearance of both warfarin enantiomers with inhibition of OAT2 activity. These results suggest that variable hepatic OAT2 function, in conjunction with CYP2C, may contribute to the high population variability in warfarin pharmacokinetics and possibly anticoagulation end points and thus warrant further clinical investigation
    corecore