8 research outputs found

    The Impact of the Physical Activity Policy Research Network

    Get PDF
    Introduction Lack of physical activity is one of the greatest challenges of the 21st century. The Physical Activity Policy Research Network (PAPRN) is a thematic network established in 2004 to identify determinants, implementation, and outcomes of policies that are effective in increasing physical activity. The purpose of this study is to describe the products of PAPRN and make recommendations for future research and best practices. Methods A mixed methods approach was used to obtain both quantitative and qualitative data on the network. First, in 2014, PAPRN's dissemination products from 2004 to 2014 were extracted and reviewed, including 57 publications and 56 presentations. Next, semi-structured qualitative interviews were conducted with 25 key network participants from 17 locations around the U.S. The transcripts were transcribed and coded. Results The results of the interviews indicated that the research network addressed several components of its mission, including the identification of physical activity policies, determinants of these policies, and the process of policy implementation. However, research focusing on physical activity policy outcomes was limited. Best practices included collaboration between researchers and practitioners and involvement of practitioners in research design, data collection, and dissemination of results. Conclusions PAPRN is an example of a productive research network and has contributed to both the process and content of physical activity policy research over the past decade. Future research should emphasize physical activity policy outcomes. Additionally, increased partnerships with practitioners for collaborative, cross-sectoral physical activity policy research should be developed

    Euclid. I. Overview of the Euclid mission

    No full text
    The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance

    Euclid. I. Overview of the Euclid mission

    No full text
    International audienceThe current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance
    corecore