3 research outputs found

    Ruthenium-Catalyzed [2 + 2 + 2] Cycloaddition Reaction Forming 2‑Aminopyridine Derivatives from α,ω-Diynes and Cyanamides

    No full text
    A novel, efficient, and mild synthetic route for the preparation of 2-aminopyridines via ruthenium-mediated [2 + 2 + 2] cycloaddition of α,ω-diynes and cyanamides has been developed. This atom-economical catalytic process demonstrated remarkable regioselectivities to access pyridine derivatives of high synthetic utility

    Access toward Fluorenone Derivatives through Solvent-Free Ruthenium Trichloride Mediated [2 + 2 + 2] Cycloadditions

    No full text
    An efficient and practical route for the preparation of highly substituted fluorenones and analogues via solvent-free ruthenium trichloride mediated [2 + 2 + 2] cycloaddition of α,ω-diynes and alkynes has been developed. This green chemistry approach involves a solventless and atom-economical catalytic process to generate densely functionalized fluorenones and related derivatives of high synthetic utility

    Synthesis of Fluorescent Azafluorenones and Derivatives via a Ruthenium-Catalyzed [2 + 2 + 2] Cycloaddition

    No full text
    An original and mild synthetic route for the preparation of novel azafluorenones and derivatives via a ruthenium-mediated [2 + 2 + 2] cycloaddition of α,ω-diynes and cyanamides has been developed. This atom-economical catalytic process demonstrated remarkable regioselectivities to access fluorescent azafluorenone derivatives. The photophysical properties of azafluorenone derivatives have been evaluated, and photoluminescence phenomena at solid and liquid states have been highlighted
    corecore