24 research outputs found

    Stipagrostis pennata (Trin.) De Winter Artificial Seed Production and Seedlings Multiplication in Temporary Immersion Bioreactors

    Get PDF
    This study was conducted to develop the protocol for artificial seed production of Stipagrostis pennata (Trin.) De Winter via somatic embryo encapsulation as well as test a temporary bioreactor system for germination and seedling growth. Embryogenic calli were encapsulated using sodium alginate and calcium chloride and then sowed in the Murashige and Skoog (MS) germination medium in in vitro cultures. The experiments were conducted as a factorial based on a completely randomized design with three replications. The treatments include three concentrations of sodium alginate (1.5%, 2.5%, and 3.5%), two ion exchange times (20 and 30 min), and two artificial seed germination media (hormone-free MS and MS supplemented with zeatin riboside and L-proline). Germination percentage and number of days needed until the beginning of germination were studied. The highest percentage of artificial seed germination was obtained when 2.5% sodium alginate was used for 30 min (ion exchange time) and when the seeds were placed on the MS germination medium supplemented with zeatin riboside and L-proline. The results of the analysis of variance in the temporary immersion bioreactor system showed that the main effects observed on the seedling growth were associated with different growth hormones in culture media and the number of feeding cycles. Experimental results also indicated that the total protein analyses of zygotic seedlings and seedlings originating from the synthetic seeds showed no statistically significant differences between these samples

    Wild Relatives of Wheat Respond Well to Water Deficit Stress : A Comparative Study of Antioxidant Enzyme Activities and Their Encoding Gene Expression

    Get PDF
    Previous studies have revealed that some wild wheat accessions respond well to water deficit treatments and have a good potential in terms of photosynthetic parameters, root system architecture, and several physiological properties. However, the biochemical responses and molecular mechanisms of antioxidant-encoding genes remain to be elucidated. Herein, we investigated the most tolerant accessions fromA. crassa,Ae. tauschii, andAe. cylindricapreviously identified from a core collection in previous studies, along with a control variety of bread wheat (T. aestivumcv. Sirvan) through measuring the shoot fresh and dry biomasses; the activities of antioxidant enzymes (including ascorbate peroxidase (APX), catalase (CAT), guaiacol peroxidase (GPX), and peroxidase (POD)); and the relative expression ofCAT, superoxide dismutase (MnSOD), andGPXandAPXgenes under control and water deficit conditions. Water deficit stress caused a significant decrease in the shoot biomasses but resulted in an increase in the activity of all antioxidant enzymes and relative expression of antioxidant enzyme-encoding genes. Principal component analysis showed a strong association between the shoot dry biomass and the activity of CAT, POD, and APX, as well asMnSODgene expression. Thus, these traits can be used as biomarkers to screen the tolerant plant material in the early growth stage. Taken together, our findings exposed the fact thatAe. tauschiiandAe. crassarespond better to water deficit stress thanAe. cylindricaand a control variety. Furthermore, these accessions can be subjected to further molecular investigation.Peer reviewe

    Wild Relatives of Wheat Respond Well to Water Deficit Stress: A Comparative Study of Antioxidant Enzyme Activities and Their Encoding Gene Expression

    Get PDF
    Previous studies have revealed that some wild wheat accessions respond well to water deficit treatments and have a good potential in terms of photosynthetic parameters, root system architecture, and several physiological properties. However, the biochemical responses and molecular mechanisms of antioxidant-encoding genes remain to be elucidated. Herein, we investigated the most tolerant accessions from A. crassa, Ae. tauschii, and Ae. cylindrica previously identified from a core collection in previous studies, along with a control variety of bread wheat (T. aestivum cv. Sirvan) through measuring the shoot fresh and dry biomasses; the activities of antioxidant enzymes (including ascorbate peroxidase (APX), catalase (CAT), guaiacol peroxidase (GPX), and peroxidase (POD)); and the relative expression of CAT, superoxide dismutase (MnSOD), and GPX and APX genes under control and water deficit conditions. Water deficit stress caused a significant decrease in the shoot biomasses but resulted in an increase in the activity of all antioxidant enzymes and relative expression of antioxidant enzyme-encoding genes. Principal component analysis showed a strong association between the shoot dry biomass and the activity of CAT, POD, and APX, as well as MnSOD gene expression. Thus, these traits can be used as biomarkers to screen the tolerant plant material in the early growth stage. Taken together, our findings exposed the fact that Ae. tauschii and Ae. crassa respond better to water deficit stress than Ae. cylindrica and a control variety. Furthermore, these accessions can be subjected to further molecular investigation

    Effect of Water Deficit Stress on Seedling Biomass and Physio-Chemical Characteristics in Different Species of Wheat Possessing the D Genome

    Get PDF
    Wild relatives of wheat serve as an extraordinary source of variability for breeding programs due to their capabilities to respond to various environmental stresses. Here, we investigated some species possessing a D genome (T. aestivum, Ae. tauschii, Ae. crassa and Ae. cylindrica) in terms of relative water content (RWC), stomatal conductance (Gs), relative chlorophyll content, initial fluorescence (Fo), maximum quantum yield of PSII (Fv/Fm), maximum primary yield of PSII photochemistry (Fv/Fo), as well as shoot fresh and dry biomasses under control and water deficit conditions. Our results revealed that water deficit negatively affected all traits; shoot fresh weight, Gs and RWC showed the highest reduction compared to the control condition. Principal component analysis (PCA) identified two PCs that accounted for 53.36% of the total variation in the water deficit conditions. Correlation analysis and PCA-based biplots showed that stress tolerance index (STI) is significantly associated with Fv/Fm and Fv/Fo under water stress conditions, suggesting that these are the best parameters to evaluate when screening for tolerant samples at the seedling stage. We identified 19 accessions from Ae. crassa and one from Ae. tauschii as the most tolerant samples. In conclusion, Ae. crassa might provide an ideal genetic resource for drought-tolerant wheat breeds

    Effect of Water Deficit Stress on Seedling Biomass and Physio-Chemical Characteristics in Different Species of Wheat Possessing the D Genome

    Get PDF
    Wild relatives of wheat serve as an extraordinary source of variability for breeding programs due to their capabilities to respond to various environmental stresses. Here, we investigated some species possessing a D genome (T. aestivum, Ae. tauschii, Ae. crassa and Ae. cylindrica) in terms of relative water content (RWC), stomatal conductance (Gs), relative chlorophyll content, initial fluorescence (Fo), maximum quantum yield of PSII (Fv/Fm), maximum primary yield of PSII photochemistry (Fv/Fo), as well as shoot fresh and dry biomasses under control and water deficit conditions. Our results revealed that water deficit negatively affected all traits; shoot fresh weight, Gs and RWC showed the highest reduction compared to the control condition. Principal component analysis (PCA) identified two PCs that accounted for 53.36% of the total variation in the water deficit conditions. Correlation analysis and PCA-based biplots showed that stress tolerance index (STI) is significantly associated with Fv/Fm and Fv/Fo under water stress conditions, suggesting that these are the best parameters to evaluate when screening for tolerant samples at the seedling stage. We identified 19 accessions from Ae. crassa and one from Ae. tauschii as the most tolerant samples. In conclusion, Ae. crassa might provide an ideal genetic resource for drought-tolerant wheat breeds

    Callus induction and shoot regeneration in Ducrosia anethifolia an important threatened medicinal plant 1

    No full text
    ABSTRACT Ducrosia Anethifolia is a threatened medicinal herb belongs to the family Apiaceae. This important medicinal plant is a native medicinal plant in Iran and has a restricted distribution in the world. It is used to treat of headache and backache in folk medicine. To callus induction, Leaf and lateral bud were used as explants and the Culture media was MS medium supplemented with 3% w/v sucrose, 0.7% w/v agar and 1gl -1 myoinositol at various concentration of cytokinins and auxins. After Five weeks, the calluses were transferred into regeneration medium that included MS medium supplemented with the combination of BA(0.5, 1 and 2 m gl -1 ) and NAA(0, and 0.5 mgl -1 ). The callus percentage, callus size and fresh weight, shoot length and number of shoots per explants were recorded. The analysis of variance showed that explants and media had significant effects on callus induction. The results revealed that the highest percentage (86.7%) of callus induction was created on MS media containing 2mg/l NAA and 1mg/l BA. On the other hand, lateral bud explants gave higher values in callus inducing percentage, fresh weight and size compared to leaf explants. In the case of plant regeneration, results indicated that the longest shoot length (21.6 mm) was exhibited for explants cultured on MS-medium containing 0.5mg/l BA and the highest number of shoots per explants(5.6) was obtained from callus grown on the medium supplemented with 2mg/l BA

    Response Surface Modelling of Noradrenaline Production in Hairy Root Culture of Purslane (Portulaca oleracea L.)

    No full text
    Common purslane (Portulaca oleracea L.) is an annual plant as one of the natural sources for noradrenaline hormone. In this research, hairy root culture of purslane was established by using Agrobacterium rhizogenes strain ATCC 15834. In the following, Box-Behnken model of response surface methodology (RSM) was employed to optimize B5 medium for the growth of P. oleracea L. hairy root line. According to the results, modelling and optimization conditions, including sucrose, CaCl2.H2O, H2PO4 and NO3-/NH4+ concentrations on maximum dry weight (0.155 g) and noradrenaline content (0.36 mg.g-1 DW) was predicted. These optimal conditions predicted by RSM were confirmed the enhancement of noradrenaline production as an application potential for production by hairy root cultures

    Protocol development for somatic embryogenesis, SSR markers and genetic modification of Stipagrostis pennata (Trin.) De Winter

    Get PDF
    BackgroundStipagrostis pennata (Trin.) De Winter is an important species for fixing sand in shifting and semi-fixed sandy lands, for grazing, and potentially as a source of lignocellulose fibres for pulp and paper industry. The seeds have low viability, which limits uses for revegetation. Somatic embryogenesis offers an alternative method for obtaining large numbers of plants from limited seed sources.ResultsA protocol for plant regeneration from somatic embryos of S. pennata was developed. Somatic embryogenesis was induced on Murashige & Skoog (MS) medium supplemented with 3 mg.L-1 2,4-D subsequently shoots were induced on MS medium and supplemented with 5 mg.L-1 zeatin riboside. The highest shoots induction was obtained when embryogenic callus derived from mature embryos (96%) in combination with MS filter-sterilized medium was used from Khuzestan location. The genetic stability of regenerated plants was analysed using ten simple sequence repeats (SSR) markers from S. pennata which showed no somaclonal variation in regenerated plants from somatic embryos of S. pennata. The regenerated plants of S. pennata showed genetic stability without any somaclonal variation for the four pairs of primers that gave the expected amplicon sizes. This data seems very reliable as three of the PCR products belonged to the coding region of the genome.Furthermore, stable expression of GUS was obtained after Agrobacterium-mediated transformation using a super binary vector carried by a bacterial strain LBA4404.ConclusionTo our knowledge, the current work is the first attempt to develop an in vitro protocol for somatic embryogenesis including the SSR marker analyses of regenerated plants, and Agrobacterium-mediated transformation of S. pennata that can be used for its large-scale production for commercial purposes

    Molecular and Physiological Variability in Bread Wheat and Its Wild Relative (Aegilops tauschii Coss.) Species under Water-Deficit Stress Conditions

    No full text
    Aegilops and Triticum spp. are two ideal gene pools for the breeding purposes of wheat. In this study, a set of Iranian accessions of Aegilops tauschii Coss. and Triticum aestivum L. species were evaluated in terms of some physiological and biochemical features under control and water-deficit stress conditions. Moreover, several simple sequence repeat (SSR) markers were employed to identify marker loci associated with the measured traits. The results indicated that water-deficit stress significantly affected all measured traits and the highest reductions due to water-deficit were recorded for shoot fresh and dry biomasses (SFB and SDB), stomatal conductance (Gs), leaf relative water content (RWC), and chlorophyll b content (Chl b). In molecular analysis, 25 SSR markers generated 50 fragments, out of which 49 fragments (98%) were polymorphic. Furthermore, the genetic variation observed within species is more than between species. The results of cluster and Bayesian model analysis classified all evaluated accessions into three main clusters. Under control and water-deficit stress conditions, 28 and 27 significant marker-trait associations (MTAs) were identified, respectively. Furthermore, 10 MTAs showed sufficiently stable expression across both growth conditions. Of these, the markers Xgwm-111, Xgwm-44, Xgwm-455, Xgwm-272, and Xgwm-292 were associated with multiple traits. Hence, these markers could serve as useful molecular tools for population characterization, gene tagging, and other molecular breeding studies

    Stipagrostis pennata (Trin.) De Winter Artificial Seed Production and Seedlings Multiplication in Temporary Immersion Bioreactors

    Get PDF
    This study was conducted to develop the protocol for artificial seed production of Stipagrostis pennata (Trin.) De Winter via somatic embryo encapsulation as well as test a temporary bioreactor system for germination and seedling growth. Embryogenic calli were encapsulated using sodium alginate and calcium chloride and then sowed in the Murashige and Skoog (MS) germination medium in in vitro cultures. The experiments were conducted as a factorial based on a completely randomized design with three replications. The treatments include three concentrations of sodium alginate (1.5%, 2.5%, and 3.5%), two ion exchange times (20 and 30 min), and two artificial seed germination media (hormone-free MS and MS supplemented with zeatin riboside and L-proline). Germination percentage and number of days needed until the beginning of germination were studied. The highest percentage of artificial seed germination was obtained when 2.5% sodium alginate was used for 30 min (ion exchange time) and when the seeds were placed on the MS germination medium supplemented with zeatin riboside and L-proline. The results of the analysis of variance in the temporary immersion bioreactor system showed that the main effects observed on the seedling growth were associated with different growth hormones in culture media and the number of feeding cycles. Experimental results also indicated that the total protein analyses of zygotic seedlings and seedlings originating from the synthetic seeds showed no statistically significant differences between these samples
    corecore