15 research outputs found

    The Evolution of Hypertension: old genes, new concepts

    Get PDF
    Hypertension is known as the “silent killer,” driving the global public health burden of cardiovascular and renal disease. Blood pressure homeostasis is intimately associated with sodium balance and the distribution of sodium between fluid compartments and within tissues. On a population level, most societies consume 10 times more salt that the 0.5 g required by physiological need. This high salt intake is strongly linked to hypertension and to the World Health Organization targeting a ∼30% relative reduction in mean population salt intake to arrest the global mortality due to cardiovascular disease. But how does a habitually high-salt diet cause blood pressure to rise? In this focused review, we discuss 2 “evolutionary medicine” concepts, presented at the ISN Forefront Meeting “Immunomodulation of Cardio-renal Function.” We first examine how ancestral variants in genes that conferred a selection advantage during early human development are now maladaptive. We then discuss the conservation of “renal” sodium transport processes across multiple organ systems, including the brain. These systems influence sodium appetite and can exert an often-overlooked effect on long-term blood pressure control

    Trichostatin A Blocks Aldosterone-Induced Na+ Transport And Control Of Serum- And Glucocorticoid-Inducible Kinase 1 In Cortical Collecting Duct Cells

    Get PDF
    Background and Purpose: Aldosterone stimulates epithelial Na+ channel (ENaC)-dependent Na+ retention in the cortical collecting duct (CCD) of the kidney by activating mineralocorticoid receptors that promote expression of serum and glucocorticoid-inducible kinase 1 (SGK1). This response is critical to BP homeostasis. It has previously been suggested that inhibiting lysine deacetylases (KDACs) can post-transcriptionally disrupt this response by promoting acetylation of the mineralocorticoid receptor. The present study critically evaluates this hypothesis. Experimental Approach: Electrometric and molecular methods were used to define the effects of a pan-KDAC inhibitor, trichostatin A, on the responses to a physiologically relevant concentration of aldosterone (3 nM) in murine mCCDcl1 cells. Key Results: Aldosterone augmented ENaC-induced Na+ absorption and increased SGK1 activity and abundance, as expected. In the presence of trichostatin A, these responses were suppressed. Trichostatin A-induced inhibition of KDAC was confirmed by increased acetylation of histone H3, H4, and α-tubulin. Trichostatin A did not block the electrometric response to insulin, a hormone that activates SGK1 independently of increased transcription, indicating that trichostatin A has no direct effect upon the SGK1/ENaC pathway. Conclusions and Implications: Inhibition of lysine de-acetylation suppresses aldosterone-dependent control over the SGK1–ENaC pathway but does not perturb post-transcriptional signalling, providing a physiological basis for the anti-hypertensive action of KDAC inhibition seen in vivo

    Prostaglandin E2 stimulates the epithelial sodium channel (ENaC) in cultured mouse cortical collecting duct cells in an autocrine manner

    Get PDF
    Funding: This study was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project number 387509280, SFB 1350), the Alexander von Humboldt Foundation (3.3-GRO/1143730 STP), the Interdisziplin ̈ares Zentrum für KlinischeForschung of Friedrich-Alexander University (IZKF, TP-A33), and the Bayerische Forschungsstiftung (PDOK-74-10).Prostaglandin E2 (PGE2) is the most abundant prostanoid in the kidney, affecting a wide range of renal functions. Conflicting data have been reported regarding the effects of PGE2 on tubular water and ion transport. The amiloride-sensitive epithelial sodium channel (ENaC) is rate limiting for transepithelial sodium transport in the aldosterone-sensitive distal nephron. The aim of the present study was to explore a potential role of PGE2 in regulating ENaC in cortical collecting duct (CCD) cells. Short-circuit current (ISC) measurements were performed using the murine mCCDcl1 cell line known to express characteristic properties of CCD principal cells and to be responsive to physiological concentrations of aldosterone and vasopressin. PGE2 stimulated amiloride-sensitive ISC via basolateral prostaglandin E receptors type 4 (EP4) with an EC50 of ∼7.1 nM. The rapid stimulatory effect of PGE2 on ISC resembled that of vasopressin. A maximum response was reached within minutes, coinciding with an increased abundance of β-ENaC at the apical plasma membrane and elevated cytosolic cAMP levels. The effects of PGE2 and vasopressin were nonadditive, indicating similar signaling cascades. Exposing mCCDcl1 cells to aldosterone caused a much slower (∼2 h) increase of the amiloride-sensitive ISC. Interestingly, the rapid effect of PGE2 was preserved even after aldosterone stimulation. Furthermore, application of arachidonic acid also increased the amiloride-sensitive ISC involving basolateral EP4 receptors. Exposure to arachidonic acid resulted in elevated PGE2 in the basolateral medium in a cyclooxygenase 1 (COX-1)-dependent manner. These data suggest that in the cortical collecting duct, locally produced and secreted PGE2 can stimulate ENaC-mediated transepithelial sodium transport.Publisher PDFPeer reviewe

    Mapping the Transcriptome Underpinning Acute Corticosteroid Action within the Cortical Collecting Duct

    Get PDF
    Funding: British Heart Foundation (BHF): Research Excellence Award RE/13/3/30183; Kidney Research UK: Innovation Grant IN_001_201703 Postdoctoral Fellowship PDF_008_20151127; Scottish Funding Council (SFC): St Andrews Restarting Research Funding Scheme; Society for Endocrinology (SFE): Early Career Grant.We report the transcriptomes associated with acute corticosteroid regulation of ENaC activity in polarised mCCDcl1 collecting duct cells. 9 genes were regulated by aldosterone (ALDO), 0 with corticosterone alone and 151 with corticosterone when 11βHSD2 activity was inhibited. We validated 3 novel ALDO-induced genes: Rasd1, Sult1d1 and Gm43305 in primary cells isolated from a novel collecting duct reporter mouse. Background Corticosteroids regulate distal nephron and collecting duct Na+ reabsorption, contributing to fluid-volume and blood pressure homeostasis. The transcriptional landscape underpinning the acute stimulation of the epithelial sodium channel (ENaC) by physiological concentrations of corticosteroids remains unclear. Methods Transcriptomic profiles underlying corticosteroid-stimulated ENaC activity in polarised mCCDcl1 cells were generated by coupling electrophysiological measurements of amiloride-sensitive currents with RNAseq. Generation of a collecting-duct specific reporter mouse line, mT/mG-Aqp2Cre, enabled isolation of primary collecting duct cells by FACS and ENaC activity was measured in cultured primary cells following acute application of corticosteroids. Expression of target genes was assessed by qRT-PCR in cultured cells or freshly isolated cells following acute elevation of steroid hormones in mT/mG-Aqp2Cre mice. Results Physiological relevance of the mCCDcl1 model was confirmed with aldosterone-specific stimulation of SGK1 and ENaC activity. Corticosterone only modulated these responses at supraphysiological concentrations or when 11βHSD2 was inhibited. When 11βHSD2 protection was intact, corticosterone caused no significant change in transcripts. We identified a small number of aldosterone-induced transcripts associated with stimulated ENaC activity in mCCDcl1 cells and a much larger number with corticosterone in the absence of 11βHSD2 activity. Cells isolated from mT/mG-Aqp2Cre mice were validated as collecting duct-specific and assessment of identified aldosterone-induced genes revealed that Sgk1, Zbtbt16, Sult1d1, Rasd1 and Gm43305 are acutely upregulated by corticosteroids both in vitro and in vivo. Conclusions This study reports the transcriptome of mCCDcl1 collecting duct cells and identifies a small number of aldosterone-induced genes associated with acute stimulation of ENaC, including 3 previously undescribed genes.PostprintPeer reviewe

    Glucocorticoid receptor activation stimulates the Na-Cl co-transporter and influences the diurnal rhythm of its phosphorylation

    Get PDF
    The sodium-chloride cotransporter (NCC) in the distal convoluted tubule contributes importantly to sodium balance and blood pressure (BP) regulation. NCC phosphorylation determines transport activity and has a diurnal rhythm influenced by glucocorticoids. Disturbing this rhythm induces “nondipping” BP, an abnormality that increases cardiovascular risk. The receptor through which glucocorticoids regulate NCC is not known. In this study, we found that acute administration of corticosterone to male C57BL6 mice doubled NCC phosphorylation without affecting total NCC abundance in both adrenalectomized and adrenal-intact mice. Corticosterone also increased the whole kidney expression of canonical clock genes: period circadian protein homolog 1 (Per1), Per2, cryptochrome 1, and aryl hydrocarbon receptor nuclear translocator-like protein 1. In adrenal-intact mice, chronic blockade of glucocorticoid receptor (GR) with RU486 did not change total NCC but prevented corticosterone-induced NCC phosphorylation and activation of clock genes. Blockade of mineralocorticoid receptor (MR) with spironolactone reduced the total pool of NCC but did not affect stimulation by corticosterone. The diurnal rhythm of NCC phosphorylation, measured at 6-h intervals, was blunted by chronic GR blockade, and a similar dampening of diurnal variation was seen in GR heterozygous null mice. These effects on NCC phosphorylation did not reflect altered rhythmicity of plasma corticosterone or serum and glucocorticoid-induced kinase 1 activity. Both mineralocorticoids and glucocorticoids emerge as regulators of NCC, acting via distinct receptor pathways. MR activation provides maintenance of the NCC protein pool; GR activation dynamically regulates NCC phosphorylation and establishes the diurnal rhythm of NCC activity. This study has implications for circadian BP homeostasis, particularly in individuals with abnormal glucocorticoid signaling as is found in chronic stress and corticosteroid therapy.</p

    Effects of nominally selective inhibitors of the kinases PI3K, SGK1 and PKB on the insulin-dependent control of epithelial Na+ absorption

    No full text
    BACKGROUND AND PURPOSE Insulin-induced Na + retention in the distal nephron may contribute to the development of oedema/hypertension in patients with type 2 diabetes. This response to insulin is usually attributed to phosphatidylinositol-3-kinase (PI3K)/serum and glucocorticoid-inducible kinase 1 (SGK1) but a role for protein kinase B (PKB) has been proposed. The present study therefore aimed to clarify the way in which insulin can evoke Na + retention. EXPERIMENTAL APPROACH We examined the effects of nominally selective inhibitors of PI3K (wortmannin, PI103, GDC-0941), SGK1 (GSK650394A) and PKB (Akti-1/2) on Na + transport in hormone-deprived and insulin-stimulated cortical collecting duct (mpkCCD) cells, while PI3K, SGK1 and PKB activities were assayed by monitoring the phosphorylation of endogenous proteins. KEY RESULTS Wortmannin substantially inhibited basal Na + transport whereas PI103 and GDC-0941 had only very small effects. However, these PI3K inhibitors all abolished insulin-induced Na + absorption and inactivated PI3K, SGK1 and PKB fully. GSK650394A and Akti-1/2 also inhibited insulin-evoked Na + absorption and while GSK650394A inhibited SGK1 without affecting PKB, Akti-1/2 inactivated both kinases. CONCLUSION AND IMPLICATIONS While studies undertaken using PI103 and GDC-0941 show that hormone-deprived cells can absorb Na + independently of PI3K, PI3K seems to be essential for insulin induced Na + transport. Akti-1/2 does not act as a selective inhibitor of PKB and data obtained using this compound must therefore be treated with caution. GSK650394A, on the other hand, selectively inhibits SGK1 and the finding that GSK650394A suppressed insulin-induced Na + absorption suggests that this response is dependent upon signalling via PI3K/SGK1.</p

    Inhibitors of the proteasome stimulate the epithelial sodium channel (ENaC) through SGK1 and mimic the effect of aldosterone

    No full text
    The epithelial sodium channel (ENaC) marks the tightly regulated, rate-limiting step of sodium re-absorption in the aldosterone-sensitive distal nephron (ASDN). Stimulation of ENaC activity by aldosterone involves the serum and glucocorticoid-induced kinase 1 (SGK1) and is mediated via complex mechanisms including inhibition of channel retrieval. Retrieved channels may be recycled or degraded, e.g. by the proteasomal pathway. The aim of the present study was to investigate whether inhibitors of the proteasome affect ENaC activity and surface expression, and to explore a possible involvement of SGK1. Short circuit current (ISC) measurements were performed on confluent mCCDcl1 murine cortical collecting duct cells to investigate the effect of two distinct proteasomal inhibitors, MG132 and bortezomib, on amiloride-sensitive ENaC-mediated ISC. Both inhibitors robustly stimulated amiloride-sensitive ISC. The time course and magnitude of the stimulatory effect of the proteasomal inhibitors on ISC were similar to those of aldosterone. Both, MG132 and aldosterone, significantly increased the abundance of β-ENaC at the cell surface. SGK1 activity was assessed by monitoring the phosphorylation of a downstream target, NDRG1, and was found to be increased by MG132. Importantly, inhibiting SGK1 activity prevented not only the stimulatory effect of aldosterone but also that of proteasomal inhibition. In conclusion, these data suggest that ENaC stimulation following proteasomal inhibition is due to an accumulation of active SGK1 resulting in increased expression of ENaC at the cell surface. Thus, inhibition of the proteasome mimics SGK1-dependent stimulation of ENaC by aldosterone.</p
    corecore