14 research outputs found
One Dimensional Kondo Lattice Model Studied by the Density Matrix Renormalization Group Method
Recent developments of the theoretical investigations on the one-dimensional
Kondo lattice model by using the density matrix renormalization group (DMRG)
method are discussed in this review. Short summaries are given for the
zero-temperature DMRG, the finite-temperature DMRG, and also its application to
dynamic quantities. Away from half-filling, the paramagnetic metallic state is
shown to be a Tomonaga-Luttinger liquid with the large Fermi surface. For the
large Fermi surface its size is determined by the sum of the densities of the
conduction electrons and the localized spins. The correlation exponent K_rho of
this metallic phase is smaller than 1/2. At half-filling the ground state is
insulating. Excitation gaps are different depending on channels, the spin gap,
the charge gap and the quasiparticle gap. Temperature dependence of the spin
and charge susceptibilities and specific heat are discussed. Particularly
interesting is the temperature dependence of various excitation spectra, which
show unusual properties of the Kondo insulators.Comment: 18 pages, 23 Postscript figures, REVTe
Supershells in Metal Clusters: Self-Consistent Calculations and their Semiclassical Interpretation
To understand the electronic shell- and supershell-structure in large metal
clusters we have performed self-consistent calculations in the homogeneous,
spherical jellium model for a variety of different materials. A scaling
analysis of the results reveals a surprisingly simple dependence of the
supershells on the jellium density. It is shown how this can be understood in
the framework of a periodic-orbit-expansion by analytically extending the
well-known semiclassical treatment of a spherical cavity to more realistic
potentials.Comment: 4 pages, revtex, 3 eps figures included, for additional information
see http://radix2.mpi-stuttgart.mpg.de/koch/Diss
Periodic orbit theory for realistic cluster potentials: The leptodermous expansion
The formation of supershells observed in large metal clusters can be
qualitatively understood from a periodic-orbit-expansion for a spherical
cavity. To describe the changes in the supershell structure for different
materials, one has, however, to go beyond that simple model. We show how
periodic-orbit-expansions for realistic cluster potentials can be derived by
expanding only the classical radial action around the limiting case of a
spherical potential well. We give analytical results for the leptodermous
expansion of Woods-Saxon potentials and show that it describes the shift of the
supershells as the surface of a cluster potential gets softer. As a byproduct
of our work, we find that the electronic shell and supershell structure is not
affected by a lattice contraction, which might be present in small clusters.Comment: 15 pages RevTex, 11 eps figures, additional information at
http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/users/koch/Diss
Orbits in Large Aluminum Clusters: Five-Pointed Stars
The distinctions in the mass spectra of large sodium (Na_N) and aluminum
(Al_N) clusters are discussed. A semiclassical method is used to describe the
shell effects within a spherical jellium model. It allows one to analyze the
relative role of different classical trajectories in the formation of
electronic supershells in clusters of various sizes at zero and finite
temperatures. A criterion for the hardness of the self-consistent potential is
formulated. The conjecture that the five-point-star trajectories make the main
contribution to the spectral oscillations for large soft-potential Al_N
(250<N<900) clusters is substantiated. The computational results are in
agreement with the mass spectra of the Al_N clusters at T ~ 300 K.Comment: 5 pages, 3 figures, PDF forma
Rough droplet model for spherical metal clusters
We study the thermally activated oscillations, or capillary waves, of a
neutral metal cluster within the liquid drop model. These deformations
correspond to a surface roughness which we characterize by a single parameter
. We derive a simple analytic approximate expression determining
as a function of temperature and cluster size. We then estimate the
induced effects on shell structure by means of a periodic orbit analysis and
compare with recent data for shell energy of sodium clusters in the size range
. A small surface roughness \AA~ is seen to
give a reasonable account of the decrease of amplitude of the shell structure
observed in experiment. Moreover -- contrary to usual Jahn-Teller type of
deformations -- roughness correctly reproduces the shape of the shell energy in
the domain of sizes considered in experiment.Comment: 20 pages, 4 figures, important modifications of the presentation, to
appear in Phys. Rev.
Un ancien recteur de l’Académie de Paris : Adolphe Mourier
Cosme Léon. Un ancien recteur de l’Académie de Paris : Adolphe Mourier. In: Revue internationale de l'enseignement, tome 48, Juillet-Décembre 1904. pp. 221-227