3,822 research outputs found

    Model gradient coil employing active acoustic control for MRI

    Get PDF
    Results are presented for a model three-axis gradient coil incorporating active acoustic control which is applied to the switched read gradient during a single-shot rapid echo-planar imaging (EPI) sequence at a field strength of 3.0 T. The total imaging acquisition time was 10.6 ms. Substantial noise reduction is achieved both within the magnet bore and outside the magnet. Typical internal noise reduction over the specimen area is 40 dBA whereas outside the acoustic chamber the noise level is reduced by 60–77 dBA. However these results are relative to a control winding which is switched in phase, adding 6 dBA in its non-optimized mode, which is included in the quoted figures

    On the Solutions of Generalized Bogomolny Equations

    Full text link
    Generalized Bogomolny equations are encountered in the localization of the topological N=4 SYM theory. The boundary conditions for 't Hooft and surface operators are formulated by giving a model solution with some special singularity. In this note we consider the generalized Bogomolny equations on a half space and construct model solutions for the boundary 't Hooft and surface operators. It is shown that for the 't Hooft operator the equations reduce to the open Toda chain for arbitrary simple gauge group. For the surface operators the solutions of interest are rational solutions of a periodic non-abelian Toda system.Comment: 16 pages, no figure

    Direct to consumer advertising

    Get PDF
    Peter R Mansfield, Barbara Mintzes and Dee Richard

    Quantum entanglement between a nonlinear nanomechanical resonator and a microwave field

    Get PDF
    We consider a theoretical model for a nonlinear nanomechanical resonator coupled to a superconducting microwave resonator. The nanomechanical resonator is driven parametrically at twice its resonance frequency, while the superconducting microwave resonator is driven with two tones that differ in frequency by an amount equal to the parametric driving frequency. We show that the semi-classical approximation of this system has an interesting fixed point bifurcation structure. In the semi-classical dynamics a transition from stable fixed points to limit cycles is observed as one moves from positive to negative detuning. We show that signatures of this bifurcation structure are also present in the full dissipative quantum system and further show that it leads to mixed state entanglement between the nanomechanical resonator and the microwave cavity in the dissipative quantum system that is a maximum close to the semi-classical bifurcation. Quantum signatures of the semi-classical limit-cycles are presented.Comment: 36 pages, 18 figure

    Cultivating healthy skepticism towards help-seeking advertisements: Dispelling the illusion of unique invulnerability

    Get PDF
    Poster PresentationBackground: Consumers are, possibly, unaware of the distinction between an industry-sponsored and a government-sponsored help-seeking ad. In order for consumers to make an informed assessment of a help-seeking ad, they need to be educated about this distinction. Methods: We report on two experiments (n Experiment 1 = 113, n Experiment 2 = 111) that investigated the impact of an educational intervention that was delivered online. Results: Intervention group participants had better odds of correctly identifying the sponsor and had greater skepticism towards pharmaceutical advertising compared to the control group. Intervention group participants were less likely to regard the ad as valuable and were more likely to view the ad as advertising, only when it was industry-sponsored. Conclusion: Our research has demonstrated that consumers do not differentiate between an industry-sponsored and a government-sponsored help-seeking ad. The use of a simple educational intervention can increase a person’s motivation to examine these ads more critically and help mitigate this problem.Brennan Ong, Carolyn Semmler, Peter Richard Mansfieldhttp://spspmeeting.org/2014/General-Info.asp

    Optimal strategies for a game on amenable semigroups

    Full text link
    The semigroup game is a two-person zero-sum game defined on a semigroup S as follows: Players 1 and 2 choose elements x and y in S, respectively, and player 1 receives a payoff f(xy) defined by a function f from S to [-1,1]. If the semigroup is amenable in the sense of Day and von Neumann, one can extend the set of classical strategies, namely countably additive probability measures on S, to include some finitely additive measures in a natural way. This extended game has a value and the players have optimal strategies. This theorem extends previous results for the multiplication game on a compact group or on the positive integers with a specific payoff. We also prove that the procedure of extending the set of allowed strategies preserves classical solutions: if a semigroup game has a classical solution, this solution solves also the extended game.Comment: 17 pages. To appear in International Journal of Game Theor

    Phase Transitions of Single Semi-stiff Polymer Chains

    Full text link
    We study numerically a lattice model of semiflexible homopolymers with nearest neighbor attraction and energetic preference for straight joints between bonded monomers. For this we use a new algorithm, the "Pruned-Enriched Rosenbluth Method" (PERM). It is very efficient both for relatively open configurations at high temperatures and for compact and frozen-in low-T states. This allows us to study in detail the phase diagram as a function of nn-attraction epsilon and stiffness x. It shows a theta-collapse line with a transition from open coils to molten compact globules (large epsilon) and a freezing transition toward a state with orientational global order (large stiffness x). Qualitatively this is similar to a recently studied mean field theory (Doniach et al. (1996), J. Chem. Phys. 105, 1601), but there are important differences. In contrast to the mean field theory, the theta-temperature increases with stiffness x. The freezing temperature increases even faster, and reaches the theta-line at a finite value of x. For even stiffer chains, the freezing transition takes place directly without the formation of an intermediate globule state. Although being in contrast with mean filed theory, the latter has been conjectured already by Doniach et al. on the basis of low statistics Monte Carlo simulations. Finally, we discuss the relevance of the present model as a very crude model for protein folding.Comment: 11 pages, Latex, 8 figure

    Continuous melting of compact polymers

    Full text link
    The competition between chain entropy and bending rigidity in compact polymers can be addressed within a lattice model introduced by P.J. Flory in 1956. It exhibits a transition between an entropy dominated disordered phase and an energetically favored crystalline phase. The nature of this order-disorder transition has been debated ever since the introduction of the model. Here we present exact results for the Flory model in two dimensions relevant for polymers on surfaces, such as DNA adsorbed on a lipid bilayer. We predict a continuous melting transition, and compute exact values of critical exponents at the transition point.Comment: 5 pages, 1 figur

    Hamiltonian evolutions of twisted gons in \RP^n

    Full text link
    In this paper we describe a well-chosen discrete moving frame and their associated invariants along projective polygons in \RP^n, and we use them to write explicit general expressions for invariant evolutions of projective NN-gons. We then use a reduction process inspired by a discrete Drinfeld-Sokolov reduction to obtain a natural Hamiltonian structure on the space of projective invariants, and we establish a close relationship between the projective NN-gon evolutions and the Hamiltonian evolutions on the invariants of the flow. We prove that {any} Hamiltonian evolution is induced on invariants by an evolution of NN-gons - what we call a projective realization - and we give the direct connection. Finally, in the planar case we provide completely integrable evolutions (the Boussinesq lattice related to the lattice W3W_3-algebra), their projective realizations and their Hamiltonian pencil. We generalize both structures to nn-dimensions and we prove that they are Poisson. We define explicitly the nn-dimensional generalization of the planar evolution (the discretization of the WnW_n-algebra) and prove that it is completely integrable, providing also its projective realization

    Chern-Simons Solitons, Toda Theories and the Chiral Model

    Full text link
    The two-dimensional self-dual Chern--Simons equations are equivalent to the conditions for static, zero-energy solutions of the (2+1)(2+1)-dimensional gauged nonlinear Schr\"odinger equation with Chern--Simons matter-gauge dynamics. In this paper we classify all finite charge SU(N)SU(N) solutions by first transforming the self-dual Chern--Simons equations into the two-dimensional chiral model (or harmonic map) equations, and then using the Uhlenbeck--Wood classification of harmonic maps into the unitary groups. This construction also leads to a new relationship between the SU(N)SU(N) Toda and SU(N)SU(N) chiral model solutions
    corecore