8 research outputs found

    Geographical area network-structural health monitoring utility computing model

    Get PDF
    In view of intensified disasters and fatalities caused by natural phenomena and geographical expansion, there is a pressing need for a more effective environment logging for a better management and urban planning. This paper proposes a novel utility computing model (UCM) for structural health monitoring (SHM) that would enable dynamic planning of monitoring systems in an efficient and cost-effective manner in form of a SHM geo-informatics system. The proposed UCM consists of networked SHM systems that send geometrical SHM variables to SHM-UCM gateways. Every gateway is routing the data to SHM-UCM servers running a geo-spatial patch health assessment and prediction algorithm. The inputs of the prediction algorithm are geometrical variables, environmental variables, and payloads. The proposed SHM-UCM is unique in terms of its capability to manage heterogeneous SHM resources. This has been tested in a case study on Qatar University (QU) in Doha Qatar, where it looked at where SHM nodes are distributed along with occupancy density in each building. This information was taken from QU routers and zone calculation models and were then compared to ideal SHM system data. Results show the effectiveness of the proposed model in logging and dynamically planning SHM.This publication was made possible by NPRP grant # 8-1781-2-725 from the Qatar National Research Fund (a member of Qatar Foundation). The publication of this article was funded by the Qatar National Library

    Design and Simulation of a Green Bi-Variable Mono-Parametric SHM Node and Early Seismic Warning Algorithm for Wave Identification and Scattering

    No full text
    Early seismic warning systems are key for safe future scalable infrastructures. In this work, a dual variable i.e. vibration and line of sight (LOS) based structure health monitoring (SHM) node is designed to sense tilt angle for early seismic warning and wave scattering detection. The SHM node, consisting of high-precision five bi-axis tiltmeters and five Blue-Violet laser diodes transmitter/receiver/reflector(LDTRR) assembly, has been designed and simulated in Proteus 7ISIS, MATLAB 7 and drafted in AutoCAD. In AutoCAD, a four LDTRR assembly is oriented at the bottom of building and its four co-planer reflectors have been orthogonally placed at effective radii with respect to the characteristic wavelengths of P, S, and Rayleigh whilst Love seismic waves, and one reflector is placed at the bottom of building. PV umbrella with a Li-ion battery has been used for green ergonomic shape. The time plots from real tiltmeter sensor nodes and data acquired from the proposed SHM node show similar behavior and results. The derived parameters of wavelength S, i.e. seismic parameter F,varied linearly from safe to hazardous seismic conditions. The variation from safe seismic to hazardous seismic transition of randomly simulated environment, also varied network traffic in GPS module as per defined threshold of sensor variables in Proteus ISIS Electronics Design Automation (EDA) engine. As per early warning evaluation functions (EWEF), the proposed design for early seismic warning algorithm (ESWA) can be a cost-effective analytics resource for any scalable SHM solution for observation range within 5km+ radius at low cost and 20km at moderate/high cost.This publication was made possible by NPRP grant # 8-1781-2-725 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors

    Design and implementation of information centered protocol for long haul SHM monitoring

    No full text
    In structural health monitoring systems (SHM), robust data transmission is the fundamental constraint. In this work, an information centered protocol is being proposed for multi-sensor and multi-variable communication channels in (SHM). The core objective is communication traffic optimization, data streams compression, bottleneck compensation for seamless information system. A novel SHM hierarchical information model has been designed and implemented using addressing taxonomy and domain definitions accumulated with data segments, beacons and flags-handshaking. On both ends of an SHM channel, a SQLite based encoding and decoding preprocessor is implemented, which requires the use of serial protocols such as CANopen, UART, 12C and SPI. Results have shown that the proposed system optimizes traffic monitoring in handling critical situations of dynamic baud rate switching.Scopu

    Structural health monitoring installation scheme using utility computing model

    No full text
    In view of intensified disasters and fatalities caused by natural phenomena, there is a pressing need for an efficient environment logging that provides structural information to administrators for a better management and urban planning. This paper proposes a novel utility model for structural health monitoring that would enable early detection of risk factors and mitigation of loss. The proposed utility computing model takes the input data in terms of 'number of occupants' in a building (i.e. MAC, International Mobile Equipment Identifier addresses and biometric attendance system installed) and SHM system data (i.e. sensors readings). It give visual representation of all the data for utility managers and experts to decide better location of SHM and number of SHM needed per zone depending on high disturbances created due to higher occupancy and number of structures per zone. Denser area with higher structures and higher population will require more precise and accurate SHM systems compared to rural areas. It also analyzes the data from SHM system and using simple machine learning algorithm give experts' suggestions for type of SHM needed at an area. It make it possible for the data of each and every device of SHM systems over several zones to be accessible by specific authorities that can be used to predict as well as forecast any natural disaster. The Structural Health Monitoring utility model is unique in terms of its heterogeneity of resource management in realizing the utility processes. Finally, a case study of Qatar University is looked at where nodes are distributed in zones along with occupant measuring is used over each building. The data was taken over simulated occupation models and mathematical models from literature for occupation and zone calculation using ideal SHM system data. It can be inferred from the data that real-time analysis data will act similar to simulated and proposed Utility Computing System will give visual data and analyze the zones as can be seen in the results. Therefore, SHM Utility Computing model is efficient and most effective system that save cost as well as prepare authorities for maintenance of a structure or crisis management due to external surroundings.Scopu

    Design and Implementation of Multi-Protocol Data Networks Interface Detector in Heterogeneous IoTs

    No full text
    In Internet of Everything (IoE) or heterogeneous IoTs, there exist a plethora of protocols and inter-connected Internet of Things. For every network protocol, the complexity of communication and wiring at the physical interface becomes more and more challenging. In this work, an automated interface detector (or gateway) is proposed using a novel port, that scans the physical layer parameters, interpolates with Electronic Industry Association/Telecommunication Industry Association (EIA/TIA) standards specification parameters and compares packet format initiates communication. In this approach, line impedance, voltage, current, SNR, power, and network capacity are used as the coefficients of merit for physical layer detection by interpolation and averaging methods. Standard packet architectures are the key parameters for communication initiation and network fastening at both ends of the data line. The serial protocols such as CANopen, Ethernet, UART, I2C, and SPI are tested and verified. Results have shown that the proposed system can detect any physical layer interface and initiate a data network regardless of connector pinouts and interface wiring complexities. The implementation results exhibit a fertile resource for redundancy handling in-line parameters of data networks.Scopu

    A real-time gradient aware multi-variable handheld urban scale air quality mapping IoT system

    No full text
    In outdoor urban scale air quality mapping, electrochemical sensors warm-up time, cross-sensitivity, geo-location typography, and energy efficiency are major challenges. These challenges lead to real-time gradient anomalies that effect the accuracy and prolonged lags in air quality mapping campaigns for state and environmental/meteorological agencies. In this work, a gradient aware, multi-variable air quality sensing node is proposed with event-triggered sensing based on position, gas magnitudes, and cross-sensitivity interpolation. In this approach, temperature, humidity, pressure, geo-position, photovoltaic power, volatile organic compounds, particulate matter, ozone, Carbon mono-oxide, Nitrogen dioxide, and Sulphur dioxide are the principle variables. Results have shown that the proposed system optimized the real-time air quality mapping for the chosen geo-spatial cluster, i.e. Qatar University.Scopu

    ICPN: An Inter-Cloud Polymorphic Network Proposal

    No full text
    corecore