1,261 research outputs found

    The effects of sodium salicylate on sexual arousal in adult male mice (mus domesticus)

    Get PDF
    Adult male rats produce 22-kHz vocalizations when exposed to a female conspecific. These ultrasonic vocalizations (USV) are a measure of the male\u27s level of sexual arousal. Previous studies have shown that antipyretic drugs diminish the amount of USV made by male rats. Male mice also emit USV (70- kHz) indicative of sexual arousal. In this study, the effects of sodium salicylate, an antipyretic drug, were examined to see if USV were diminished in mice. Fifteen male adult mice were tested in a Treatment (Saline vs. Sodium Salicylate) x Dose (High vs. Low) design, with repeated measures across the treatments. Vocalizations and latency to mount a female were used as dependent measures. The results indicated that at either dose sodium salicylate diminished USV and increased mount latencies. Furthermore, animals in the high dose groups took longer than animals in the low dose group to mount females following treatment with saline injections. These findings suggest that antipyretics, such as sodium salicylate, may diminish sexual arousal in mice and rats

    Fuel Production Using Membrane Reactors

    Get PDF
    The constant increase in population has led to greater fossil fuel consumption, and subsequently a significant increase in greenhouse gases emission to the atmosphere. This presents a serious threat to the environment and impacts climate change to a great extent. Fossil fuel supplies are depleting fast, and the price of these fuels is also increasing due to their heightened demand. The environmental concerns regarding this are the increased emissions of harmful pollutants such as carbon dioxide, sulphur dioxide and hydrocarbons. Here we review the alternative fuel technologies which are currently employed to aid the eradication of the current environmental problems. Most notably, this review will demonstrate how membrane reactors are implemented to improve and intensify the existing renewable fuel production processes. Furthermore, the advantages of membrane reactors when compared to the conventional ones, will be discussed; and the environmental benefits these particular reactors pose will also be highlighted. We will showcase how these membrane reactors have been applied successfully to improve biodiesel, hydrogen and Fischer-Tropsch synthesis processes. The application of membranes aids the increase in the conversion of desired products, whilst shifting the equilibrium of the reaction and reducing undesired by-products. Membrane reactors also overcome immiscibility issues that hinder conventional reactor processes. Moreover, they have also demonstrated a significant reduction in the separation and purification of impurities, as they couple them both in one step. This shows drastic economic and energy requirement reductions in the amount of wastewater treatment associated with conventional fuel production reactor

    Computational Fluid Dynamic (CFD) and Reaction Modelling Study 6 of Bio-oil Catalytic Hydrodeoxygenation in Microreactors

    Get PDF
    A Computational Fluid Dynamic (CFD) model was derived and validated, in order to, investigate the hydrodeoxygenation 9 reaction of 4-propylguaiacol, which is a lignin-derived compound present in bio-oil. A 2-D packed bed microreactor was 10 simulated using pre-sulphided NiMo/Al2O3 solid catalyst in isothermal operation. A pseudo-homogeneous model was first 11 created to validate the experimental results from literature. Various operational parameters were investigated and validated 12 with the experimental data, such as temperature, pressure and liquid flow rate; and it was found that the CFD findings were 13 in very good agreement with the results from literature. The model was then upgraded to that of a detailed multiphase 14 configuration; and phenomena such as internal and external mass transfer limitations were investigated, as well as, reactant 15 concentrations on the rate of 4-propylguaiacol. Both models agreed with the experimental data, and therefore confirm their 16 ability for applications related to the prediction of the behaviour of bio-oil compounds hydrodeoxygenation

    Process Simulation Modelling of the Catalytic Hydrodeoxygenation of 4-Propylguaiacol in Microreactors

    Get PDF
    A process simulation model was created using Aspen Plus to investigate the hydrodeoxygenation of 4-propylguaiacol, a model component in lignin-derived pyrolysis oil, over a presulphided NiMo/Al2O3 solid catalyst. Process simulation modelling methods were used to develop the pseudo-homogeneous packed bed microreactor. The reaction was conducted at 400 °C and an operating pressure of 300 psig with a 4-propylguaiacol liquid flow rate of 0.03 mL·min−1 and a hydrogen gas flow rate of 0.09 mL·min−1. Various operational parameters were investigated and compared to the experimental results in order to establish their effect on the conversion of 4-propylguaiacol. The parameters studied included reaction temperature, pressure, and residence time. Further changes to the simulation were made to study additional effects. In doing so, the operation of the same reactor was studied adiabatically, rather than isothermally. Moreover, different equations of state were used. It was observed that the conversion was enhanced with increasing temperature, pressure, and residence time. The results obtained demonstrated a good model validation when compared to the experimental results, thereby confirming that the model is suitable to predict the hydrodeoxygenation of pyrolysis oil

    A ground-based experimental test program to duplicate and study the spacecraft glow phenomenon

    Get PDF
    The use of a plasma device, the Advanced Concepts Torus-I, for producing atoms and molecules to study spacecraft glow mechanisms is discussed. A biased metal plate, located in the plasma edge, is used to accelerate and neutralize plasma ions, thus generating a neutral beam with a flux approx. 5 x 10 to the 14th power/sq cm/sec at the end of a drift tube. Our initial experiments are to produce a 10 eV molecular and atomic nitrogen beam directed onto material targets. Photon emission in the spectral range 2000 to 9000 A from excited species formed on the target surface will be investigated

    Fuel production using membrane reactors: a review

    Get PDF
    Population growth has led to higher consumption of fossil fuel, and subsequently to a major increase of greenhouse gases emissions to the atmosphere, thus inducing global warming. Fossil fuel supplies are depleting, and the price of these fuels is increasing. Moreover, there are concerns about related emissions of toxic pollutants such as sulphur dioxide and aromatic hydrocarbons. Here, we review alternative fuel technologies. We focus on how membrane reactors improve the existing production processes of renewable fuels. Advantages and environmental benefits of membrane reactors are compared to the conventional techniques. Membrane reactors have been applied successfully to improve biodiesel, hydrogen and Fischer–Tropsch synthesis. Membranes help the conversion of products, whilst shifting the equilibrium of the reaction and reducing undesired by-products. Membrane reactors also overcome immiscibility issues that hinder conventional reactor processes. Overall, membrane reactors reduce cost and energy needed for the treatment of wastewater from fuel production

    A review of the valorization and management of industrial spent catalyst waste in the context of sustainable practice: The case of the State of Kuwait in parallel to European industry

    Get PDF
    Industrial solid waste management encompasses a vital part of developed and developing countries strategies alike. It manages waste generated from vital industries and governs the hazardous waste generated as a major component of integrated waste management strategies. This article reviews the practices that govern the management approaches utilized in the developed world for industrial spent catalysts. It critically assesses the current situation of waste management within the developing world region focusing on the industrial waste component, in a novel attempt to crucially develop a strategy for a way forward based on best practices and future directions with major European industries. The review also draws parallels with European countries to compare their practices with those of the State of Kuwait, which rely solely on landfilling for the management of its industrial waste. Spent catalysts recovery methods are discussed at length covering conventional methods of valuable metals and chemicals recovery (e.g., hydrometallurgical, solid–liquid and liquid–liquid extraction) as well as biological recovery methods. A major gap exists within regulations that govern the practice of managing industrial waste in Kuwait, where it is essential to start regulating industries that generate spent catalysts in-view of encouraging the establishment of valorization industries for metal and chemical recovery. This will also create a sustainable practice within state borders, and can reduce the environmental impact of landfilling such waste in Kuwait

    Well-defined homopolypeptides, copolypeptides, and hybrids of Poly(l-proline)

    Get PDF
    l-Proline is the only, out of 20 essential, amino acid that contains a cyclized substituted α-amino group (is formally an imino acid), which restricts its conformational shape. The synthesis of well-defined homo- and copolymers of l-proline has been plagued either by the low purity of the monomer or the inability of most initiating species to polymerize the corresponding N-carboxy anhydride (NCA) because they require a hydrogen on the 3-N position of the five-member ring of the NCA, which is missing. Herein, highly pure l-proline NCA was synthesized by using the Boc-protected, rather than the free amino acid. The protection of the amine group as well as the efficient purification method utilized resulted in the synthesis of highly pure l-proline NCA. The high purity of the monomer and the use of an amino initiator, which does not require the presence of the 3-N hydrogen, led for the first time to well-defined poly(l-proline) (PLP) homopolymers, poly(ethylene oxide)-b-poly(l-proline), and poly(l-proline)-b-poly(ethylene oxide)-b-poly(l-proline) hybrids, along with poly(γ-benzyl-l-glutamate)-b-poly(l-proline) and poly(Boc-l-lysine)-b-poly(l-proline) copolypeptides. The combined characterization (NMR, FTIR, and MS) that results for the l-proline NCA revealed its high purity. In addition, all synthesized polymers exhibit high molecular and compositional homogeneity

    Decomposition of Additive-Free Formic Acid Using a Pd/C Catalyst in Flow: Experimental and CFD Modelling Studies

    Get PDF
    The use of hydrogen as a renewable fuel has gained increasing attention in recent years due to its abundance and efficiency. The decomposition of formic acid for hydrogen production under mild conditions of 30 °C has been investigated using a 5 wt.% Pd/C catalyst and a fixed bed microreactor. Furthermore, a comprehensive heterogeneous computational fluid dynamic (CFD) model has been developed to validate the experimental data. The results showed a very good agreement between the CFD studies and experimental work. Catalyst reusability studies have shown that after 10 reactivation processes, the activity of the catalyst can be restored to offer the same level of activity as the fresh sample of the catalyst. The CFD model was able to simulate the catalyst deactivation based on the production of the poisoning species CO, and a sound validation was obtained with the experimental data. Further studies demonstrated that the conversion of formic acid enhances with increasing temperature and decreasing liquid flow rate. Moreover, the CFD model established that the reaction system was devoid of any internal and external mass transfer limitations. The model developed can be used to successfully predict the decomposition of formic acid in microreactors for potential fuel cell applications
    • …
    corecore