84 research outputs found

    Oscillation-free method for semilinear diffusion equations under noisy initial conditions

    Full text link
    Noise in initial conditions from measurement errors can create unwanted oscillations which propagate in numerical solutions. We present a technique of prohibiting such oscillation errors when solving initial-boundary-value problems of semilinear diffusion equations. Symmetric Strang splitting is applied to the equation for solving the linear diffusion and nonlinear remainder separately. An oscillation-free scheme is developed for overcoming any oscillatory behavior when numerically solving the linear diffusion portion. To demonstrate the ills of stable oscillations, we compare our method using a weighted implicit Euler scheme to the Crank-Nicolson method. The oscillation-free feature and stability of our method are analyzed through a local linearization. The accuracy of our oscillation-free method is proved and its usefulness is further verified through solving a Fisher-type equation where oscillation-free solutions are successfully produced in spite of random errors in the initial conditions.Comment: 19 pages, 9 figure

    A Density Matrix Renormalization Group Method Study of Optical Properties of Porphines and Metalloporphines

    Full text link
    The symmetrized Density-Matrix-Renormalization-Group (DMRG) method is used to study linear and nonlinear optical properties of Free base porphine and metallo-porphine. Long-range interacting model, namely, Pariser-Parr-Pople (PPP) model is employed to capture the quantum many body effect in these systems. The non-linear optical coefficients are computed within correction vector method. The computed singlet and triplet low-lying excited state energies and their charge densities are in excellent agreement with experimental as well as many other theoretical results. The rearrangement of the charge density at carbon and nitrogen sites, on excitation, is discussed. From our bond order calculation, we conclude that porphine is well described by the 18-annulenic structure in the ground state and the molecule expands upon excitation. We have modelled the regular metalloporphine by taking an effective electric field due to the metal ion and computed the excitation spectrum. Metalloporphines have D4hD_{4h} symmetry and hence have more degenerate excited states. The ground state of Metalloporphines show 20-annulenic structure, as the charge on the metal ion increases. The linear polarizability seems to increase with the charge initially and then saturates. The same trend is observed in third order polarizability coefficients.Comment: 13 pages, 6 figure

    Electromagnetically induced transparency in cold 85Rb atoms trapped in the ground hyperfine F = 2 state

    Full text link
    We report electromagnetically induced transparency (EIT) in cold 85Rb atoms, trapped in the lower hyperfine level F = 2, of the ground state 52S1/2^{2}S_{1/2} (Tiwari V B \textit{et al} 2008 {\it Phys. Rev.} A {\bf 78} 063421). Two steady state Λ\Lambda-type systems of hyperfine energy levels are investigated using probe transitions into the levels F^{\prime} = 2 and F^{\prime} = 3 of the excited state 52P3/2^{2}P_{3/2} in the presence of coupling transitions F = 3 \to F^{\prime} = 2 and F = 3 \to F^{\prime} = 3, respectively. The effects of uncoupled magnetic sublevel transitions and coupling field's Rabi frequency on the EIT signal from these systems are studied using a simple theoretical model.Comment: 12 pages, 7 figure

    Role of ambient air on photoluminescence and electrical conductivity of assembly of ZnO Nanoparticles

    Full text link
    Effect of ambient gases on photoluminescence (PL) and electrical conductivity of films prepared using ZnO nanoparticles (NPs) have been investigated. It is observed that NPs of size below 20 nm kept inside a chamber exhibit complete reduction in their visible PL when oxygen partial pressure of the surrounding gases is decreased by evacuation. However the visible PL from ZnO NPs is insensitive to other major gases present in the ambient air. The rate of change of PL intensity with pressure is inversely proportional to the ambient air pressure and increases when particle size decreases due to the enhanced surface to volume ratio. On the other hand an assembly of ZnO NPs behaves as a complete insulator in the presence of dry air and its major components like N2, O2 and CO2. Electrical conduction having resistivity ~102 - 103 {\Omega}m is observed in the presence of humid air. The depletion layer formed at the NP surface after acquiring donor electrons of ZnO by the adsorbed oxygen, has been found to control the visible PL and increases the contact potential barrier between the NPs which in turn enhances the resistance of the film.Comment: arXiv admin note: significant text overlap with arXiv:1008.249

    Like Sign Dilepton Signature for Gluino Production at LHC with or without R Conservation

    Get PDF
    The isolated like sign dilepton signature for gluino production is investigated at the LHC energy for the RR conserving as well as the LL and BB violating SUSY models over a wide range of the parameter space. One gets viable signals for gluino masses of 300 and 600 GeV for both RR conserving and LL violating models, while it is less promising for the BB violating case. For a 1000 GeV gluino, the LL violating signal should still be viable; but the RR conserving signal becomes too small at least for the low luminosity option of LHC.Comment: (e-mail: [email protected]) Latex: No. of pages 21, no. of figures 6 - available on reques

    Maintaining Diversity of Integrated Rice and Fish Production Confers Adaptability of Food Systems to Global Change

    Get PDF
    Rice and fish are preferred foods, critical for healthy and nutritious diets, and provide the foundations of local and national economies across Asia. Although transformations, or "revolutions," in agriculture and aquaculture over the past half-century have primarily relied upon intensified monoculture to increase rice and fish production, agroecological approaches that support biodiversity and utilize natural processes are particularly relevant for achieving a transformation toward food systems with more inclusive, nutrition-sensitive, and ecologically sound outcomes. Rice and fish production are frequently integrated within the same physical, temporal, and social spaces, with substantial variation amongst the types of production practice and their extent. In Cambodia, rice field fisheries that strongly rely upon natural processes persist in up to 80% of rice farmland, whereas more input and infrastructure dependent rice-shrimp culture is expanding within the rice farmland of Vietnam. We demonstrate how a diverse suite of integrated production practices contribute to sustainable and nutrition-sensitive food systems policy, research, and practice. We first develop a typology of integrated production practices illustrating the nature and degree of: (a) fish stocking, (b) water management, (c) use of synthetic inputs, and (d) institutions that control access to fish. Second, we summarize recent research and innovations that have improved the performance of each type of practice. Third, we synthesize data on the prevalence, outcomes, and trajectories of these practices in four South and Southeast Asian countries that rely heavily on fish and rice for food and nutrition security. Focusing on changes since the food systems transformation brought about by the Green Revolution, we illustrate how integrated production practices continue to serve a variety of objectives to varying degrees: food and nutrition security, rural livelihood diversification and income improvement, and biodiversity conservation. Five shifts to support contemporary food system transformations [i.e., disaggregating (1) production practices and (2) objectives, (3) utilizing diverse metrics, (4) valuing emergent, place-based innovation, (5) building adaptive capacity] would accelerate progress toward Sustainable Development Goal 2, specifically through ensuring ecosystem maintenance, sustainable food production, and resilient agricultural practices with the capacity to adapt to global change.This work was undertaken as part of the CGIAR Research Program on Fish Agri-Food Systems (FISH) led by WorldFish with contribution from the CGIAR Research program on Water Land and Ecosystems (WLE) led by the International Water Management Institute. Both these programs are supported by contributors to the CGIAR Trust Fund. Additional funding support for this work was provided by the Australian Government and the Australian Centre for International Agricultural Research grant work was provided by the Australian Centre for International Research through the Development of Rice Fish Systems in the Ayeyarwady Delta, Myanmar (ACIAR project FIS/2016/135). The support through the United States Agency for International Development under Cooperative Agreement No. AID-OAA-L-14-00006 and KAES contribution number 20-317-J and grant number AID-442-IO12-00001 are duly acknowledged. Photo credits: Anon., Finn Thilsted, Anon., Anon., Todd Brown (Figure 1)

    Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties

    Get PDF
    Characterizing nanoparticle dispersions and understanding the effect of parameters that alter dispersion properties are important for both environmental applications and toxicity investigations. The role of particle surface area, primary particle size, and crystal phase on TiO2 nanoparticle dispersion properties is reported. Hydrodynamic size, zeta potential, and isoelectric point (IEP) of ten laboratory synthesized TiO2 samples, and one commercial Degussa TiO2 sample (P25) dispersed in different solutions were characterized. Solution ionic strength and pH affect titania dispersion properties. The effect of monovalent (NaCl) and divalent (MgCl2) inert electrolytes on dispersion properties was quantified through their contribution to ionic strength. Increasing titania particle surface area resulted in a decrease in solution pH. At fixed pH, increasing the particle surface area enhanced the collision frequency between particles and led to a higher degree of agglomeration. In addition to the synthesis method, TiO2 isoelectric point was found to be dependent on particle size. As anatase TiO2 primary particle size increased from 6 nm to 104 nm, its IEP decreased from 6.0 to 3.8 that also results in changes in dispersion zeta potential and hydrodynamic size. In contrast to particle size, TiO2 nanoparticle IEP was found to be insensitive to particle crystal structure
    corecore