21 research outputs found

    BMP-2 signaling in ovarian cancer and its association with poor prognosis

    Get PDF
    BACKGROUND: We previously observed the over-expression of BMP-2 in primary cultures of epithelial ovarian cancer (EOC) cells as compared to normal epithelial cells based on Affymetrix microarray profiling [1]. Here we investigate the effect of BMP-2 on several parameters of ovarian cancer tumorigenesis using the TOV-2223, TOV-1946 and TOV-112D EOC cell lines. METHODS: We treated each EOC cell line with recombinant BMP-2 and assayed various parameters associated with tumorigenesis. More specifically, cell signaling events induced by BMP-2 treatment were investigated by western-blot using anti-phosphospecific antibodies. Induction of Id1, Snail and Smad6 mRNA expression was investigated by real time RT-PCR. The ability of cells to migrate was tested using the scratch assay. Cell-cell adhesion was analyzed by the ability of cells to form spheroids. We also investigated BMP-2 expression in tissue samples from a series of EOC patients. RESULTS: Treatment of these cell lines with recombinant BMP-2 induced a rapid phosphorylation of Smad1/5/8 and Erk MAPKs. Increased expression of Id1, Smad6 and Snail mRNAs was also observed. Only in the TOV-2223 cell line were these signaling events accompanied by an alteration in cell proliferation. We also observed that BMP-2 efficiently increased the motility of all three cell lines. In contrast, BMP-2 treatment decreased the ability of TOV-1946 and TOV-112D cell lines to form spheroids indicating an inhibition of cell-cell adhesion. The expression of BMP-2 in tumor tissues from patients was inversely correlated with survival. CONCLUSION: These results suggest that EOC cell secretion of BMP-2 in the tumor environment contributes to a modification of tumor cell behavior through a change in motility and adherence. We also show that BMP-2 expression in tumor tissues is associated with a poorer prognosis for ovarian cancer patients

    Current gene panels account for nearly all homologous recombination repair-associated multiple-case breast cancer families

    Get PDF
    It was hypothesized that variants in underexplored homologous recombination repair (HR) genes could explain unsolved multiple-case breast cancer (BC) families. We investigated HR deficiency (HRD)-associated mutational signatures and second hits in tumor DNA from familial BC cases. No candidates genes were associated with HRD in 38 probands previously tested negative with gene panels. We conclude it is unlikely that unknown HRD-associated genes explain a large fraction of unsolved familial BC

    Investigating the causal role of MRE11A p.E506* in breast and ovarian cancer

    Get PDF
    The nuclease MRE11A is often included in genetic test panels for hereditary breast and ovarian cancer (HBOC) due to its BRCA1-related molecular function in the DNA repair pathway. However, whether MRE11A is a true predisposition gene for HBOC is still questionable. We determined to investigate this notion by dissecting the molecular genetics of the c.1516G > T;p.E506* truncating MRE11A variant, that we pinpointed in two unrelated French-Canadian (FC) HBOC patients. We performed a case-control study for the variant in ~ 2500 breast, ovarian, and endometrial cancer patients from the founder FC population of Quebec. Furthermore, we looked for the presence of second somatic alterations in the MRE11A gene in the tumors of the carriers. In summary, these investigations suggested that the identified variant is not associated with an increased risk of developing breast or ovarian cancer. We finally performed a systematic review for all the previously reported MRE11A variants in breast and ovarian cancer. We found that MRE11A germline variants annotated as pathogenic on ClinVar often lacked evidence for such classification, hence misleading the clinical management for affected patients. In summary, our report suggests the lack of clinical utility of MRE11A testing in HBOC, at least in the White/Caucasian populations

    Detection of Human Papillomavirus Type 16 DNA in Consecutive Genital Samples Does Not Always Represent Persistent Infection as Determined by Molecular Variant Analysis

    No full text
    Persistent human papillomavirus (HPV) infection of the uterine cervix is a risk factor for progression to high-grade squamous intraepithelial lesions. Detection in consecutive genital samples of HPV-16 DNA, a frequently encountered HPV type, may represent persistent infection or reinfection. We undertook a study using PCR–single-strand conformation polymorphism (SSCP) analysis and sequencing of PCR products (PCR-sequencing) to determine if consecutive HPV-16-positive samples contained the same HPV-16 variant. Fifty women (36 human immunodeficiency virus [HIV] seropositive, 14 HIV seronegative) had at least two consecutive genital specimens obtained at 6-month intervals that contained HPV-16 DNA as determined by a consensus L1 PCR assay. A total of 144 samples were amplified with two primer pairs for SSCP analysis of the entire long control region. Fifteen different SSCP patterns were identified in our population, while 22 variants were identified by PCR-sequencing. The most frequent SSCP pattern was found in 75 (53%) samples from 27 (54%) women. The SSCP patterns obtained from consecutive specimens were identical for 46 (92%) of 50 women, suggesting persistent infection. Four women exhibited in consecutive specimens different HPV-16 SSCP patterns that were all confirmed by PCR-sequencing. The additional information on the nature of persistent infection provided by molecular variant analysis was useful for 6% of women, since three of the four women who did not have identical consecutive specimens would have been misclassified as having persistent HPV-16 infection on the basis of HPV typing

    BMP-2 signaling in ovarian cancer and its association with poor prognosis

    No full text
    Abstract Background We previously observed the over-expression of BMP-2 in primary cultures of epithelial ovarian cancer (EOC) cells as compared to normal epithelial cells based on Affymetrix microarray profiling 1. Here we investigate the effect of BMP-2 on several parameters of ovarian cancer tumorigenesis using the TOV-2223, TOV-1946 and TOV-112D EOC cell lines. Methods We treated each EOC cell line with recombinant BMP-2 and assayed various parameters associated with tumorigenesis. More specifically, cell signaling events induced by BMP-2 treatment were investigated by western-blot using anti-phosphospecific antibodies. Induction of Id1, Snail and Smad6 mRNA expression was investigated by real time RT-PCR. The ability of cells to migrate was tested using the scratch assay. Cell-cell adhesion was analyzed by the ability of cells to form spheroids. We also investigated BMP-2 expression in tissue samples from a series of EOC patients. Results Treatment of these cell lines with recombinant BMP-2 induced a rapid phosphorylation of Smad1/5/8 and Erk MAPKs. Increased expression of Id1, Smad6 and Snail mRNAs was also observed. Only in the TOV-2223 cell line were these signaling events accompanied by an alteration in cell proliferation. We also observed that BMP-2 efficiently increased the motility of all three cell lines. In contrast, BMP-2 treatment decreased the ability of TOV-1946 and TOV-112D cell lines to form spheroids indicating an inhibition of cell-cell adhesion. The expression of BMP-2 in tumor tissues from patients was inversely correlated with survival. Conclusion These results suggest that EOC cell secretion of BMP-2 in the tumor environment contributes to a modification of tumor cell behavior through a change in motility and adherence. We also show that BMP-2 expression in tumor tissues is associated with a poorer prognosis for ovarian cancer patients.</p

    Modeling the Diversity of Epithelial Ovarian Cancer through Ten Novel Well Characterized Cell Lines Covering Multiple Subtypes of the Disease

    No full text
    Cancer cell lines are amongst the most important pre-clinical models. In the context of epithelial ovarian cancer, a highly heterogeneous disease with diverse subtypes, it is paramount to study a wide panel of models in order to draw a representative picture of the disease. As this lethal gynaecological malignancy has seen little improvement in overall survival in the last decade, it is all the more pressing to support future research with robust and diverse study models. Here, we describe ten novel spontaneously immortalized patient-derived ovarian cancer cell lines, detailing their respective mutational profiles and gene/biomarker expression patterns, as well as their in vitro and in vivo growth characteristics. Eight of the cell lines were classified as high-grade serous, while two were determined to be of the rarer mucinous and clear cell subtypes, respectively. Each of the ten cell lines presents a panel of characteristics reflective of diverse clinically relevant phenomena, including chemotherapeutic resistance, metastatic potential, and subtype-associated mutations and gene/protein expression profiles. Importantly, four cell lines formed subcutaneous tumors in mice, a key characteristic for pre-clinical drug testing. Our work thus contributes significantly to the available models for the study of ovarian cancer, supplying additional tools to better understand this complex disease
    corecore