8 research outputs found

    Assessing the contribution of open crop straw burning to ground-level ozone and associated health impacts in China and the effectiveness of straw burning bans.

    Get PDF
    In recent years, ozone pollution in China has been shown to increase in frequency and persistence despite the concentrations of fine particulate matter (PM2.5) decreasing steadily. Open crop straw burning (OCSB) activities are extensive in China and emit large amounts of trace gases during a short period that could lead to elevated ozone concentrations. This study addresses the impacts of OCSB emissions on ground-level ozone concentration and the associated health impact in China. Total VOCs and NOx emissions from OCSB in 2018 were 798.8 Gg and 80.6 Gg, respectively, with high emissions in Northeast China (31.7%) and North China (23.7%). Based on simulations conducted for 2018, OCSB emissions are estimated to contribute up to 0.95 µg/m3 increase in annual averaged maximum daily 8-hour (MDA8) ozone and up to 1.35 µg/m3 for the ozone season average. The significant impact of OCSB emissions on ozone is mainly characterized by localized and episodic (e.g., daily) changes in ozone concentration, up to 20 µg/m3 in North China and Yangtze River Delta region and even more in Northeast China during the burning season. With the implementation of straw burning bans, VOCs and NOx emissions from OCSB dropped substantially by 46.9%, particularly over YRD (76%) and North China (60%). Consequently, reduced OCSB emissions result in an overall decrease in annual averaged MDA8 ozone, and reductions in monthly MDA8 ozone could be over 10 µg/m3 in North China. The number of avoided premature death due to reduced OCSB emissions (considering both PM2.5 and ozone) is estimated to be 6120 (95% Confidence Interval: 5320–6800), with most health benefits gained over east and central China. Our results illustrate the effectiveness of straw burning bans in reducing ozone concentrations at annual and national scales and the substantial ozone impacts from OCSB events at localized and episodic scales

    The importance of NOx control for peak ozone mitigation based on a sensitivity study using CMAQ‐HDDM‐3D model during a typical episode over the Yangtze River delta region, China.

    Get PDF
    In recent years, ground-level ozone (O3) has been one of the main pollutants hindering air quality compliance in China's large city-clusters including the Yangtze River Delta (YRD) region. In this work, we utilized the process analysis (PA) and the higher-order decoupled direct method (HDDM-3D) tools embedded in the Community Multiscale Air Quality model (CMAQ) to characterize O3 formation and sensitivities to precursors during a typical O3 pollution episode over the YRD region in July 2018. Results indicate that gas-phase chemistry contributed dominantly to the ground-level O3 although a significant proportion was chemically produced at the middle and upper boundary layer before reaching the surface via diffusion process. Further analysis of the chemical pathways of O3 and Ox formation provided deep insights into the sensitivities of O3 to its precursors that were consistent with the HDDM results. The first-order sensitivities of O3 to anthropogenic volatile organic compounds (AVOC) were mainly positive but small, and temporal variations were negligible compared with those to NOx. During the peak O3 time in the afternoon, the first- and second-order sensitivities of O3 to NOx were significantly positive and negative, respectively, suggesting a convex response of O3 to NOx over most areas including Shanghai, Hangzhou, Nanjing and Hefei. These findings further highlighted an accelerated decrease in ground-level O3 in the afternoon corresponding to continuous decrease of NOx emissions in the afternoon. Therefore, over the YRD region including its metropolises, NOx emission reductions will be more important in reducing the afternoon peak O3 concentration compared with the effect of VOC emission control alone

    HTAP3 fires: towards a multi-model, multi-pollutant study of fire impacts

    Get PDF
    Open biomass burning has major impacts globally and regionally on atmospheric composition. Fire emissions include particulate matter, tropospheric ozone precursors, greenhouse gases, as well as persistent organic pollutants, mercury and other metals. Fire frequency, intensity, duration, and location are changing as the climate warms, and modelling these fires and their impacts is becoming more and more critical to inform climate adaptation and mitigation, as well as land management. Indeed, the air pollution from fires can reverse the progress made by emission controls on industry and transportation. At the same time, nearly all aspects of fire modelling – such as emissions, plume injection height, long-range transport, and plume chemistry – are highly uncertain. This paper outlines a multi-model, multi-pollutant, multi-regional study to improve the understanding of the uncertainties and variability in fire atmospheric science, models, and fires’ impacts, in addition to providing quantitative estimates of the air pollution and radiative impacts of biomass burning. Coordinated under the auspices of the Task Force on Hemispheric Transport of Air Pollution, the international atmospheric modelling and fire science communities are working towards the common goal of improving global fire modelling and using this multi-model experiment to provide estimates of fire pollution for impact studies. This paper outlines the research needs, opportunities, and options for the fire-focused multi-model experiments and provides guidance for these modelling experiments, outputs, and analysis that are to be pursued over the next 3 to 5 years. It proposes a plan for delivering specific products at key points over this period to meet important milestones relevant to science and policy audiences

    Estimation of Emission Strength and Air Pollutant Concentrations by Lagrangian Particle Modeling

    Get PDF
    A Lagrangian particle model was applied to estimating emission strength and air pollutant concentrations specifically for the short-range dispersion of an air pollutant in the atmospheric boundary layer. The model performance was evaluated with experimental data. The model was then used as the platform of parametric uncertainty analysis, in which effects of uncertainties in five parameters (Monin-Obukhov length, friction velocity, roughness height, mixing height, and the universal constant of the random component) of the model on mean ground-level concentrations were examined under slightly and moderately stable conditions. The analysis was performed under a probabilistic framework using Monte Carlo simulations with Latin hypercube sampling and linear regression modeling. In addition, four studies related to the Lagrangian particle modeling was included. They are an alternative technique of formulating joint probability density functions of velocity for atmospheric turbulence based on the Koehler-Symanowski technique, analysis of local increments in a multidimensional single-particle Lagrangian particle model using the algebra of Ito integrals and the Wagner-Platen formula, analogy between the diffusion limit of Lagrangian particle models and the classical theory of turbulent diffusion, and evaluation of some proposed forms of the Lagrangian velocity autocorrelation of turbulence.Ph.D.Committee Chair: Armistead G. Russell; Committee Member: Donald R. Webster; Committee Member: Michael H. Bergin; Committee Member: P. K. Yeung; Committee Member: Philip J. W. Robert

    A Study of Urban Haze and Its Association with Cold Surge and Sea Breeze for Greater Bangkok

    No full text
    This study deals with haze characteristics under the influence of the cold surge and sea breeze for Greater Bangkok (GBK) in 2017–2022, including haze intensity and duration, meteorological classification for haze, and the potential effects of secondary aerosols and biomass burning. A total of 38 haze episodes and 159 haze days were identified. The episode duration varies from a single day to up to 14 days, suggesting different pathways of its formation and evolution. Short-duration episodes of 1–2 days are the most frequent with 18 episodes, and the frequency of haze episodes decreases as the haze duration increases. The increase in complexity in the formation of relatively longer episodes is suggested by a relatively higher coefficient of variation for PM2.5. Four meteorology-based types of haze episodes were classified. Type I is caused by the arrival of the cold surge in GBK, which leads to the development of stagnant conditions favorable for haze formation. Type II is induced by sea breeze, which leads to the accumulation of air pollutants due to its local recirculation and development of the thermal internal boundary layer. Type III consists of the haze episodes caused by the synergetic effect of the cold surge and sea breeze while Type IV consists of short haze episodes that are not affected by either the cold surge or sea breeze. Type II is the most frequent (15 episodes), while Type III is the most persistent and most polluted haze type. The spread of haze or region of relatively higher aerosol optical depth outside GBK in Type III is potentially due to advection and dispersion, while that in Type IV is due to short 1-day episodes potentially affected by biomass burning. Due to cold surge, the coolest and driest weather condition is found under Type I, while Type II has the most humid condition and highest recirculation factor due to the highest average sea breeze duration and penetration. The precursor ratio method suggests the potential effect of secondary aerosols on 34% of the total haze episodes. Additionally, biomass burning is found to potentially affect half of the total episodes as suggested by the examination of back trajectories and fire hotspots. Based on these results, some policy implications and future work are also suggested

    Evolution of Urban Haze in Greater Bangkok and Association with Local Meteorological and Synoptic Characteristics during Two Recent Haze Episodes

    No full text
    This present work investigates several local and synoptic meteorological aspects associated with two wintertime haze episodes in Greater Bangkok using observational data, covering synoptic patterns evolution, day-to-day and diurnal variation, dynamic stability, temperature inversion, and back-trajectories. The episodes include an elevated haze event of 16 days (14–29 January 2015) for the first episode and 8 days (19–26 December 2017) for the second episode, together with some days before and after the haze event. Daily PM2.5 was found to be 50 µg m−3 or higher over most of the days during both haze events. These haze events commonly have cold surges as the background synoptic feature to initiate or trigger haze evolution. A cold surge reached the study area before the start of each haze event, causing temperature and relative humidity to drop abruptly initially but then gradually increased as the cold surge weakened or dissipated. Wind speed was relatively high when the cold surge was active. Global radiation was generally modulated by cloud cover, which turns relatively high during each haze event because cold surge induces less cloud. Daytime dynamic stability was generally unstable along the course of each haze event, except being stable at the ending of the second haze event due to a tropical depression. In each haze event, low-level temperature inversion existed, with multiple layers seen in the beginning, effectively suppressing atmospheric dilution. Large-scale subsidence inversion aloft was also persistently present. In both episodes, PM2.5 showed stronger diurnality during the time of elevated haze, as compared to the pre- and post-haze periods. During the first episode, an apparent contrast of PM2.5 diurnality was seen between the first and second parts of the haze event with relatively low afternoon PM2.5 over its first part, but relatively high afternoon PM2.5 over its second part, possibly due to the role of secondary aerosols. PM2.5/PM10 ratio was relatively lower in the first episode because of more impact of biomass burning, which was in general agreement with back-trajectories and active fire hotspots. The second haze event, with little biomass burning in the region, was likely to be caused mainly by local anthropogenic emissions. These findings suggest a need for haze-related policymaking with an integrated approach that accounts for all important emission sectors for both particulate and gaseous precursors of secondary aerosols. Given that cold surges induce an abrupt change in local meteorology, the time window to apply control measures for haze is limited, emphasizing the need for readiness in mitigation responses and early public warning
    corecore