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ABSTRACT 

 

Air quality modeling integrates the knowledge of how physical and chemical 

processes affect pollutants in the atmosphere.  One category of air quality modeling is 

Lagrangian particle modeling that has been widely applied to pollutant dispersion in the 

atmospheric boundary layer (ABL).  It treats the migration of a pollutant as a random 

process and accounts for extensive details of atmospheric turbulence and meteorology.  

The motivation of this thesis is the importance of applying this modeling technique as a 

tool to estimating emission strength and pollutant concentrations using data from direct 

measurement.   

The main theme of the thesis deals with the development and application of a 

Lagrangian particle model (LPM) to estimating emission strength and air pollutant 

concentrations specifically for the short-range dispersion of an air pollutant in the ABL.  

The model performance was evaluated with two experimental data sets: one obtained 

from the Rubbertown field study and the other from the Project Prairie Grass (PPG) 

experiments.  Satisfactory agreement was found between model predictions and PPG 

data, and the LPM was used as the platform of parametric uncertainty analysis.  

Uncertainty in model formulation, resolution, and parameters typically exist and are of 

importance because such uncertainty can considerably affect model results.  In this thesis, 

effects of uncertainties in five parameters (Monin-Obukhov length, friction velocity, 

roughness height, mixing height, and the universal constant of the random component) of 

the LPM on mean ground-level concentrations were examined under slightly and 

moderately stable conditions.  The analysis was performed under a probabilistic 
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framework using Monte Carlo simulations with Latin hypercube sampling and linear 

regression modeling.  It has been shown that, among the meteorological parameters, 

friction velocity is typically the most important input.  The universal constant is another 

influential input because its uncertainty contribution often dominates those from most 

other inputs.  Additional analysis of the half width of mean ground-level concentration 

contours has been conducted. 

Further, the thesis includes four additional studies related to the Lagrangian particle 

modeling as follows:  

� An alternative technique of formulating joint probability density functions (pdfs) of 

velocity for atmospheric turbulence based on the Koehler-Symanowski technique has 

been presented, with emphasis on the ABL under convective conditions. A number of 

joint pdfs have been illustrated and discussed.  

� Several aspects of local increments in a multidimensional single-particle LPM have 

been analyzed and discussed.  The main tools used for the analysis are the algebra of 

Ito integrals and the Wagner-Platen formula.  By doing so, additional understanding 

of the model validity of the model and the accuracy of the solution to the model in 

numerical simulation can be gained.  

� Analogy between the diffusion limit of LPMs and the classical theory of turbulent 

diffusion has been discussed.   The diffusion limit refers to the asymptotic condition 

where the local decorrelation time scale of turbulence becomes zero. The method 

used in performing the asymptotic reduction was the projection formalism.  

� Some proposed forms of the Lagrangian velocity autocorrelation of turbulence has 

been briefly discussed using a set of mathematical and physical requirements. 
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Ts  Local time scale of nonstationarity of a turbulent flow 
s  Variable whose dimension is inverse of time 
t  Time 
to  Initial time 
v1, v2  Functions, see Eqs. (7.36), (7.37), (7.50), and (7.51) 
W  Standard Brownian motion 
w  Lagrangian velocity  
z  Position or displacement 
〈 〉  Ensemble average or expectation of a random variable 
〈 | 〉  Conditional ensemble average or expectation of a random variable 
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CHAPTER 1 

 

INTRODUCTION 

  

1.1. Overview 

Air quality models present the integrated knowledge and understanding of how 

physical and chemical processes affect pollutants in the atmosphere.  They are important 

tools for both scientific and regulatory communities.  One major category of air quality 

models deals with air pollutant dispersion (shortly, air dispersion) in the atmospheric 

boundary layer (ABL).  A large number of air dispersion models have been developed for 

different purposes and applications.  The most well known are Gaussian plume models in 

which the distribution of pollutant concentrations at downwind locations is postulated as 

a Gaussian function or its variants (Turner, 1970).  Gaussian plume modeling is the basis 

for several regulatory models of the U. S. Environmental Protection Agency, such as the 

Industrial Source Complex (ISC) model and, recently, the AERMOD model (U.S. EPA, 

2004).  Examples of other air dispersion models are the similarity-based approximations 

(van Ulden, 1978; Briggs, 1982), the hybrid plume dispersion model (Hanna and Paine, 

1989), the second-order closure integrated model plume (Sykes et al., 1984), and the 

Lagrangian particle model (Thomson, 1987; Wilson and Sawford, 1996).  Lagrangian 

particle modeling is also called the Lagrangian stochastic modeling.  In this thesis, both 

name are used interchangeably in this thesis.  Due to increasing advances in 

understanding the physics of the ABL, recent air dispersion models incorporate more 
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details of atmospheric turbulence and meteorology, leading to better soundness and 

validity in their formulations and applications. 

The ABL is defined as the layer of the atmosphere that is significantly affected by 

the presence of the ground surface.  Flows in this region are primarily controlled by the 

characteristics of the ground surface and thermal-mechanical interactions between the 

surface and the air adjacent to the ground surface.  The lowest part (≈ 10%) of the ABL is 

customarily called the surface boundary layer (SBL).  Although there is no precise 

definition of this layer, it is generally referred to as the region above the ground where 

vertical fluxes vary only slightly or are approximately constant.  For this reason, it is also 

called the constant flux layer.  Influences from larger atmospheric scales also play a role 

in complicating a flow in a local scale.  Usually, flows in the ABL are turbulent and 

associated with high Reynolds numbers, especially during the day, because the surface-

air interaction causes hydrodynamic instability, giving rise to chaotic fluid (air) motions 

with different scales called “eddies”.   For example, suppose the depth of the ABL is 1 

km, the characteristic turbulent velocity scale is 1 m s−1, and the kinematic viscosity of air 

is of the order of 10−5 m2 s−1.  Based on these values, the corresponding Reynolds number 

is of the order of 107.  Accordingly, pollutant dispersion in the ABL is dominantly 

controlled by turbulence.  The degree of turbulence also varies temporally.  In the 

nighttime, the ABL becomes stably stratified and less turbulent because the ground 

surface is cooling and a stable temperature gradient is induced extending from the 

ground.  The stable temperature gradient suppresses turbulence generated by the wind 

shear, and turbulence can exist only in the presence of moderate or strong winds.  Besides 

turbulence, the dispersion of a pollutant may become more complicated by the physical 
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properties of a pollutant (such as heavy or light gases) and chemical reactions between 

the pollutant and the ambient air.    

Lagrangian particle modeling is a type of turbulence modeling in which the 

migration of a pollutant is treated as a random process in a Lagrangian coordinate 

reference frame and a pollutant particle is assumed to be equivalent to a fluid particle that 

moves along well with a flow streamline.  This type of modeling has gained considerable 

interest from scientific community and has been widely and successfully applied to 

turbulent dispersion problems, especially in the ABL (e.g. Luhar and Britter, 1989; 

Flesch et al. 1995; Rotach et al., 1996).  Development of this type of modeling dates back 

to the solution of a Brownian motion and to the classic work of Taylor (1921) and has 

been advanced along with increased insight into the physics of turbulence (Rodean, 1996, 

Chapters 1 and 2).  It has been known that the Lagrangian particle modeling gives 

accurate results, compared to several other modeling types, primarily because it can 

account for the great number of details that govern dispersion mechanisms in a turbulent 

flow.  Moreover, effects from both spatial inhomogeneity and temporal non-stationarity 

of a turbulent flow can be incorporated into the modeling directly.  Nevertheless, in 

practice, such flow details may not be comprehensively available, leading to some level 

of difficulty and uncertainty in implementation.  Lagrangian particle modeling usually 

requires a relatively large computational time in implementation because a large number 

of particle trajectories need to be simulated in order to have high statistical reliability and 

confidence in inferring pollutant concentrations.         

A Lagrangian particle model (LPM) (or a Lagrangian stochastic model (LSM)) 

typically consists of several physical and mathematical components in its formulation and 
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implementation.  Its major assumption is that the joint evolution of the position and 

velocity of a fluid particle proceeds over time in a Markov manner, which is described as 

a set of stochastic differential equations (SDEs) (or Langevin equations).  In the SDEs, 

there are two coefficients involved: drift and diffusion.   The drift coefficient represents 

the local acceleration of the fluid particle associated with a number of turbulence 

statistics whereas the diffusion coefficient represents the acceleration due to random 

forcing.  The form of the former is determined by the well-mixed condition (Thomson, 

1987), and that of the latter is determined by the inertial subrange theory (Kolmogorov, 

1941).  Figure 1-1 shows a schematic of the main components in a typical LPM.  The 

numerical implementation of LPMs is straightforward and natural in concept.  That is, a 

set of particles is released from a source, and their simulated trajectories are tracked.  By 

doing so, the concentration at a particular location or receptor downwind from the source 

is statistically estimated as a linear function of the number of particles present in the 

neighborhood of that location.    

For dispersion problems in the ABL, turbulence statistics need to be obtained for 

characterizing the drift and diffusion coefficients.  Although direct measurement is 

desirable, it is often impossible to be conducted comprehensively for the entire spatial or 

temporal domain of interest.  An alternative is resorting to modeling or interpolating such 

statistics.  One of widely used techniques is interpolating turbulence statistics by 

similarity-based formulas that are scaled by a group of meteorological parameters as a 

function of elevation above the ground.  For the ABL under unstable conditions, the key 

scaling parameters are convective velocity scale, Monin-Obukhov length, and mixing 
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height while, under stable conditions, they are friction velocity, Monin-Obukhov length, 

and mixing height.  In practice, using similarity-based interpolations can sometimes lead 

to a certain level of errors or uncertainties in model predictions or results.  The reason is 

that the values of meteorological parameters may not be precisely estimated or measured.  

So, determining how the uncertainty in a model output is induced due to the uncertainties 

in model inputs is important in that it helps to establish the uncertainty level of model 

outputs and also helps to specify model inputs that are influential to the model outputs 

(i.e. inputs of importance).  In the area of air dispersion, this information is useful for 

model users and decision makers in model evaluation, risk assessment, air quality 

management, and particularly generic to this thesis, the estimation of emission strength 

and air pollutant concentrations.  

Motivated by the development and applicability of the Lagrangian particle 

modeling and the increased knowledge of the ABL, this thesis is to develop an LPM and 

apply it to estimating emission strength and pollutant concentrations downwind for short-

range dispersion.  Due to the importance of considering effects of uncertainty in a 

computer model on its results, it is also of interest of this thesis to perform the uncertainty 

analysis of the LPM for some particular aspects of such uncertainty.  To examine the 

model performance, predictions by the model were compared to measurement data 

obtained from the Rubbertown field study and from Project Prairie Grass (PPG) 

experiments.  The Rubbertown field study is a project initiated and organized by the 

Georgia Tech Research Institute (GTRI) with the collaboration of the Air Quality Group 

of the department of Civil and Environmental and the U.S. Army Soldier and Biological 

Chemical Command (SBCCOM), under the sponsorship of the U.S. Environmental 
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Protection Agency (U. S. EPA).  The field study was conducted in summer 2000 at the 

Dupont Dow Facility in the Rubbertown industrial complex, Louisville, Kentucky.  In the 

project, an innovative non-Doppler laser wind sensor was developed by the GTRI, and its 

performance was tested in the field.  In addition, a dispersion experiment was carried out 

using several measurement instruments to collect concentration and meteorological data 

for use in the modeling.  The PPG experiments (Barad, 1958) are considered the most 

comprehensive dispersion field experiments ever conducted in North America and have 

been extensively used in testing various dispersion models.  Along with the development 

and application of the LPM, four additional studies related the Lagrangian particle 

modeling were conducted.  They are described as follows: 

A first study concerns the analytical formulation of joint probability density 

functions (pdfs) of velocity in the ABL.  This subject is motivated by the fact that the pdf 

of velocity is an important component in turbulence modeling, especially Lagragian 

particle modeling, because it provides the information for one-point statistics of velocity 

that can be used to characterize the drift coefficient of an LPM.  Moreover, the pdf 

formulation for one velocity component (i.e. for one-dimensional turbulence) has been 

considerably investigated and developed while that for more than one velocity 

component is far less advanced.  Here, an alternative technique called the Koehler-

Symanowski formulation (Koehler and Symanowski, 1995) is presented, by which a joint 

pdf is constructed by taking advantage of the available information of its associated 

marginal pdfs.   

 A second study deals with local increments involved in LPMs.  The rationale is 

that the validity of an LPM essentially relies on a number of assumptions, one of which is 
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the magnitude of a time scale within which the models proceed properly theoretically and 

numerically.   For example, Pope (2002) found that although the form of the diffusion 

coefficient of a typical LPM takes an isotropic form (see Chapter 2), a large departure 

from isotropy could take place during numerical simulations.  Monti and Leuzzi (1996) 

expressed concern of the possibility of highly sensitive or overflow behavior of an LPM 

during simulations and necessarily reduced time step sizes to be very small.  Thomson 

(1987), Rotach et al. (1996), and Schwere et al. (2002) restricted time step sizes by some 

ad hoc strategies for the simple and widely used Euler differencing scheme.  Thus, it is of 

interest to investigate the roles that local increments play.  The tool used in doing so is 

the algebra of multiple stochastic integrals, enabling the local increment of a variable (or 

a function) and its statistics to be expressed as a series expansion.   Here, several aspects 

of such local increments are analyzed, including those related to the form of the diffusion 

coefficient, those arising from the truncation of higher-order terms of certain numerical 

differencing schemes, and the roles of the restriction strategies of time step sizes for the 

Euler scheme.  

A third study presents a theoretical analogy between the diffusion limit of LPMs 

and the classical theory of turbulent diffusion of Taylor (1921).  The diffusion limit refers 

to the asymptotic condition where the local decorrelation time scale of turbulence 

becomes zero, causing an LPM to reduce to a random displacement model (RDM).  Note 

that an RDM is a stochastic model in which the position of a particle is explicitly 

modeled as a Markov process and are considered equivalent to an eddy diffusion model.  

Some workers have applied them to the problems of turbulent diffusion (Rodean, 1996, p. 
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41-42, and references therein).  The method used in performing the asymptotic analysis is 

the formalism of projection method (Gardiner, 1997, Chapter 6).    

A fourth study briefly discusses some proposed forms of Lagrangian velocity 

autocorrelation for turbulent diffusion using simple mathematical and physical 

requirements.   

 

 

1.2. Scope and Objectives 

This thesis revolves around the technique of Lagrangian particle modeling applies 

it as a tool to air dispersion problems.  The framework of this thesis is the short-range 

dispersion of a non-reactive neutrally-buoyant pollutant in the ABL, and the thesis is 

divided into the following parts: 

 

Part 1:  Estimation of emission strength and pollutant concentrations by an LPM 

Objectives: 

� Develop a three-dimensional source-receptor LPM for estimating emission strength 

and pollutant concentrations downwind. 

� Evaluate the performance of the developed LPM using the data collected and 

processed from the Rubbertown field study and the PPG experiments. 

 

Part 2:  Uncertainty analysis of an LPM under weakly and moderately stable conditions 

Objectives: 
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� Evaluate how uncertainties in a number of parameters of the LSM developed in Part 1 

affect mean ground-level concentrations and the half-width of mean ground-level 

concentration contours at a distance from a continuous point source using Monte 

Carlo simulations with Latin hypercube sampling and linear regression modeling. 

� Specify parameters (or inputs) of importance of the model. 

 

Part 3:  An alternative approach in formulating joint pdfs of velocity in the ABL 

Objectives: 

� Apply the Koehler-Symanowski technique to formulating joint pdfs of velocity in the 

ABL, with emphasis on the ABL under convection conditions. 

� Illustrate and discuss a number of pdfs formulated by this technique. 

 

Part 4:  Local increments of first-order LPMs and their roles in numerical implementation 

Objectives: 

� Apply the algebra of multiple stochastic integrals to analyzing a number of local 

increments and their statistics involved in multidimensional LPMs. 

� Examine local increments and their statistics related to the form of the diffusion 

coefficient.  

� Examine the hierarchy of local numerical errors arising from the truncation of higher-

order terms from three numerical differencing schemes: the Euler, Milstein, and 

order-1.5 strong Taylor schemes, with emphasis on the first scheme.   

� Discuss the roles of a number of restriction strategies of time step sizes for the Euler 

scheme. 
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Part 4:  Analogy between the diffusion limit of LPMs and the classical theory of turbulent 

diffusion 

Objectives: 

� Qualitatively relate the concept of the correlation function of velocity defining the 

eddy diffusivity at large times for stationary isotropic turbulence in Taylor (1921) to 

the case of nonstationary inhomogeneous turbulence.  

 

Part 5:  Evaluation of some proposed forms of Lagrangian velocity autocorrelation for 

turbulent diffusion 

Objectives: 

� Discuss some proposed forms of Lagrangian velocity autocorrelation for stationary 

isotropic turbulence using a number of mathematical and physical requirements.  

 

 

1.3. Thesis Organization 

The contents of the remaining eight chapters of the thesis are as follows:  Chapter 

2 describes the relevant physical and mathematical components of the Lagrangian 

particle modeling.  Chapter 3 provides the details of the Rubbertown field measurements 

and the PPG experiments and those of the LPM developed and used in the study as well 

as the model evaluation.  Chapter 4 presents the formal evaluation of effects of 

uncertainties in a number of parameters in the developed LPM on mean ground-level 

concentrations under weakly and moderately stable conditions.  As seen, Chapters 2-4 
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constitute the main focus of the thesis.  For Chapters 5-8, they correspond to the four 

additional studies related to the Lagrangian particle modeling.  Chapter 5 presents an 

alternative technique in analytically formulating of joint probability density functions of 

velocity for turbulent flows in the ABL.  In Chapter 6, the analysis of local increments 

involved in LPMs is conducted, and the results from the analysis are discussed in detail.  

Chapter 7 presents a theoretical analogy between the diffusion limit of LPMs and the 

classical theory of turbulent diffusion.  In Chapter 8, some proposed forms of Lagrangian 

velocity autocorrelation are examined using some simple mathematical and physical 

requirements.  Finally, Chapter 9 gives the relevant conclusions and comments of the 

thesis and suggests future work. 
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CHAPTER 2 

 

DESCRIPTION OF LAGRANGIAN PARTICLE MODELING 

 

In this chapter, a brief historical review of Lagrangian particle model is given 

while more details can be seen in Rodean (1996, Chapter 2).  The mathematical and 

physical fundamentals of Lagrangian particle modelin are described for an 

incompressible turbulent flow, which include fluid and marked particles, model 

formulation, Kolmogorov’s hypotheses, Markov assumption, and statistical inference of 

emission strength and mean concentrations.  

 

 

2.1. Historical Background 

 The foundation of Lagrangian particle modeling dates back to botanist Robert 

Brown’s observation of the irregular motion of small pollen grains suspended on a water 

surface in early 19th century.  This behavior became known later as Brownian motion and 

was successfully explained in a probabilistic framework by Einstein (1905).  Following 

Einstein's work, Smoluchowski (1906) and Langevin (1908) developed two 

complementary theories for the motion of particles in fluids. Langevin presented a 

stochastic differential equation (which was later named after him, i.e. Langevin equation) 

for the random movement of a particle while Smoluchowski described it as an evolving 

probability distribution by a partial differential equation.  Both approaches have become 

standard techniques for describing a variety of random (or stochastic) phenomena, 
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especially Markov processes.  Since then, the theory of Markov processes and stochastic 

differential equations had been advanced by many workers such as A. D. Fokker, K. Ito, 

A. N. Kolmogorov, L. S. Ornstein, R. L. Stratonovich, G. E. Uhlenbeck, and N. Weiner.  

 Parallel to the theory of random processes is ever-increased understanding of 

physics of turbulence and turbulent flows.  Taylor (1921) introduced a classical concept 

of how to relate mass diffusion in a turbulent flow to velocity autocorrelation function, 

which was extended further by Richardson (1926).   Kolmogorov (1941) developed an 

influential theory, customarily called inertial-subrange or K41 theory, including a number 

of hypotheses characterizing small-scale motions in a turbulent flow.   Obukhov’s (1959) 

is the first to suggest that a Markov process be used to model a turbulent diffusion, which 

is currently known as Lagrangian particle (or stochastic) modeling of turbulent diffusion.  

This idea has been adopted and extended considerably.   The theoretical rigor of this 

modeling technique is due to several works during past twenty-five years, e.g. Durbin 

(1983), Pope (1985, 1987), Sawford (1985), and Thomson (1987, 1990).  Importantly, 

Thomson (1987) introduced a fundamental concept called the well-mixed condition that 

helps characterize Lagragian particle models (LPMs) in an appropriate and systematic 

manner.  Recent developments have dealt with specification and treatment of boundary 

conditions for a model, characterization and verification of the drift coefficient of a 

model, application to various turbulent flows, and model development for concentration 

fluctuations due to turbulent diffusion (Sawford, 1992; Wilson and Sawford, 1996; Pope, 

2000, Chapter 12).  One major factor that has led to the wide application of the modeling 

technique in practice is the availability of high-speed computational resources.   
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2.2. Fluid and Marked Particles 

 In an LPM, a fluid element is considered both “a fluid particle” and “a marked 

particle”.  The term “a fluid particle” is used to designate the part of a flow being 

followed.  A fluid particle presumably represents a fluid element whose size is much 

larger than the molecular length scale but at least smaller than the smallest scale to be 

resolved in a problem.   In the context of turbulence, the upper bound of its size is 

approximately the Kolmogorov scale. When existing in a flow, the fluid particle moves 

kinematically along a streamline or holds its own entity without disturbing the flow.   

Conservation of mass for a marked particle in a Lagrangian coordinate reference 

is written as 

   

RS
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++
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∂

= 2

2

d
d ,                              (2.1) 

 

where  is the concentration at location x and time t, D is the molecular 

diffusivity, S is the external source or sink, and R is the gain or loss by reactions.  When 

the dispersion of a pollutant is dominated or controlled by turbulence, the molecular 

diffusivity D may be neglected.  As a consequence, since a Lagrangian coordinate 

reference frame is attached onto a fluid particle along its entire migration, the source term 

S automatically becomes zero.  Then, Eq. (2.1) is reduced to R, where 

),( tCC x≡

=tC d/d )(tCC ≡  

is now the concentration (or mass load) associated with the particle.  If there is no 
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reaction involved in the dispersion, the reaction term R disappears (i.e. 0).  This 

corollary suggests that the entire mass of a fluid particle is always held constant.  

=tC d/d

  

 

2.3. Model Formulation 

 An LPM is based essentially on the assumption that a joint process of a fluid (and 

marked) particle’s position and velocity (x, u) in a turbulent flow evolves continuously 

with time in a Markov manner.  In three dimensions, the joint process can be expressed 

by the following set of stochastic differential equations (SDEs)  

 

,ddd
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                                     (2.2) 

 

where i and j (= 1, 2, and 3) are the Cartesian directional indices,  is the 

drift coefficient in direction i, 

),,( taa ii ux≡

),( tbb ijij x≡  is the component (i, j) of the velocity-

independent diffusion coefficient, and dWj is the differential of a Weiner process in 

direction j.  Eq. (2.2) is also called the Langevin equation of the process.  All variables in 

the above equation are defined at time t. The Weiner process is the uncorrelated Gaussian 

forcing with mean zero and variance dt, and its differential represents an external random 

acceleration (acting on a fluid particle) with properties 0)(d)(d =tWsW ii  for s ≠ t and 

0)(d)(d =tWtW ji  for i ≠ j.  Note that all equations in this chapter are written in a 

tensor form where the summation over indices applies.  The Markov assumption is 

considered acceptable for the reason that the acceleration of fluid particles is typically 
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autocorrelated only over times of order of τη that is small for a turbulent flow with a large 

Reynolds number.  The above model is subject to two necessary conditions: the inertial 

subrange theory (Kolmogorov, 1941) and the well-mixed condition (Thomson, 1987).  

According to the former condition, bij takes the universal form  

 

                               (2.3) ,)( 2/1εδ oijij Cb =

 

where δij is the Kronecker delta function, Co is the dimensionless universal constant, and ε 

is the mean dissipation rate of turbulent kinetic energy.  The well-mixed condition states 

that if the particles of a pollutant are initially well mixed (in both position and velocity 

spaces) in a flow, they will remain so.  According to this condition, Thomson showed that 

the expression of ai can be written as follows: 
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where  is the probability density function of (Eulerian) velocity and the 

function 
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subject to the boundary condition 
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 .as0 ∞→→ uiφ        (2.6) 

 

For two and three dimensions, there generally exist a large (or infinite) number of 

solutions to Eq. (2.5), causing the non-uniqueness problem for the form of ai.  If pE is 

given to be Gaussian (or normally distributed), i.e. 
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the simplest form of iφ is (Thomson, 1987)  
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where π = 3.141592654 … , τ is the covariance matrix of velocity,  is the inverse 

matrix of τ, and U

1−τ

i is the mean (Eulerian) velocity in direction i,  

 

 

2.4. Kolmogorov’s Hypotheses 

According to Kolmogorov (1941), for any turbulent flow with a large Reynolds 

number, the turbulent energy of the flow is transferred from larger scales of motion to 
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smaller scales of motion through a mechanism called the “energy cascade”.  The cascade 

eventually goes to the end of turbulence scale where most of the transferred energy 

dissipates quickly into thermal energy by viscosity.  The mean dissipation rate of 

turbulent energy (denoted by ε) can be approximated by , where uLu /3′=ε ′  is the 

characteristic velocity scale of a turbulent flow, L is the characteristic length scale of the 

flow (whose magnitude is of the order of the flow geometry), and ν is the kinematic 

viscosity of a fluid.  At the end of scale, the smallest length scale (η), velocity scale (uη), 

and time scale (τη) have a universal form that is uniquely determined by ν and the mean 

energy dissipation rate ε are estimated by  and , 

respectively.  These smallest scales are typically referred to as the Kolmogorov scales.  

The region below the Komogorov scales is conventionally called the dissipation 

subrange.  For the turbulent motions of scale l in the range η << l << L, their statistics 

are locally isotropic (i.e. invariant to the rotation and reflection of the coordinate axes) 

and have a universal form that is uniquely determined by ε and independent of ν.  The 

region corresponding to this range is called the inertial subrange.   

,)/( 4/13 εη v= ,)( 4/1ενη =u 2/1)/( εντη =

 By applying some stochastic properties of the Weiner process to Eq. (2.1) (see its 

details in Section 6.4 of Chapter 6), it can be shown that, at time t,   

 

,))(())()(())()(( 2tOtbbtuttututtu jkikjjii ∆+∆⋅=−∆+⋅−∆+             (2.9) 

 

where ∆t is a timestep size at time t.  In the inertial subrange, the right-hand-side (RHS) 

term of the above equation is equal to tCoij ∆⋅εδ  (Monin and Yaglom, 1975, p. 358), 
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simply yielding Eq. (2.2) (strictly speaking, for small ∆t).  For the universal constant Co, 

there has been an inconsistency in its reported values, ranging widely from 2 to 10 (for 

review, see Du et al. (1995) and Degrazia and Anfossi (1998)).  This work uses the value 

of 3.0, according to the estimate Co = 3.0 ± 0.5 by Du et al. (1995).   

 

 

2.5. Statistical Inference of Emission Strength and Mean Concentrations 

 To implement an LPM, a large number of particles are required to be simulated in 

order to obtain high confidence and reliability in statistical inference.  Generally, tens of 

thousands of particles are used in practice.  Following the concept of a marked particle, 

dispersion process is conservative, i.e. there is no gain or loss of the mass of a pollutant 

after release from an emission source.  Hence, it is straightforward that the pollutant 

concentration at any location is linearly proportional to the emission strength of the 

source.  For an instantaneous source, suppose that a mass strength of S is released and 

that a total of N particles are generated at the same initial time and carries an equal 

amount of load S while migrating.  It is straightforward to express the mean concentration 

at location x and time t (denoted by ),( tC x ) as the linear proportionality to the 

relationship between the emission strength and the number of particles present at time t 

within a grid cell placed at location x.  That is, 
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where V is the volume of the grid cell placed at location x,  is the 

indicator function that equals unity for the i

)inparticle( th ViI

th particle present in the grid cell at time t and, 

otherwise, zero.   

For a continuous source with an emission rate of Q, one method in implementing 

the model is releasing one particle at a time from the source successively with an equal 

interparticle time (Tp).  With this, an amount of mass load  is assigned to each 

particle.  Suppose that the source has released a pollutant for a long period of time such 

that the concentration field downwind from the source becomes steady (i.e. independent 

of time).  Then, the mean concentration can be computed by  

pTQ
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An alternative method for a continuous source is based on the concept of total residence 

time, by which (i) each particle is generated at the same initial time, (ii) the residence 

time that each particle spends inside a grid cell is recorded and summed up with those 

from the other particles, and (iii) the concentration is linearly proportional to the total 

residence time.   In other words, 
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where  is the residence time for which the i)inparticle( th ViTr
th particle spends within the 

grid cell at location x and the other variables are the same as previously.  One major 

advantage of this method is that the spatial-temporal variation of each particle’s trajectory 

is better captured.   

 

 

2.6. Parameterization of Turbulence Statistics for an LPM 

 For simulation of particles in an LPM, this thesis assumes an idealized condition 

where atmospheric turbulence is stationary and horizontally homogeneous and the 

turning of the wind aloft is neglected and Monin-Obukhov similarity theory and its 

extension apply.  The stationary assumption is generally considered acceptable for short-

range dispersion because the travel time average of a cloud of particles is not so large that 

atmospheric conditions change significantly.  Accordingly, any derivative terms of 

turbulence statistics with respect to time, required by the model, become zero, and any 

derivative terms with respect to the horizontal coordinates also become zero.  All 

turbulence statistics required by the model can be estimated by similarity-based 

interpolation formulas proposed in the literature as a function of elevation.  Specifically, 

a logarithmic wind profile is used to interpolate the mean wind in the horizontal plane.    

It is noted that, in such interpolation formulas, turbulence statistics are scaled by a 

number of scaling metrological parameters such as Monin-Obukhov length, friction 

velocity (or convective velocity scale), mixing height or inversion depth, and surface 

roughness height.  Figure 2-1 shows a schematic of the parameterization of turbulence 

statistics for an LPM in the thesis. 
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Figure 2-1. Parameterization of turbulence statistics for an LPM 

 

 

 

 24



References 

Degrazia, G., Anfossi, D. (1998) Estimation of the Kolmogorov constant Co from 
classical statistical diffusion theory. Atmos. Environ. 32, 3611-3614. 

 
Du, S., Sawford, B. L., Wilson, J. D., Wilson, D. J. (1995) Estimation of the Kolmogorov 

constant (Co) for the Lagrangian structure function, using a second-order 
Lagrangian model of grid turbulence. Phys. Fluids 7, 3083-3090. 

 
Durbin, P. A. (1983) Stochastic Differential Equations and Turbulent Dispersion.  NASA 

Ref. Pub.1103. 
 
Einstein, A. (1905) Uber die von der molekularkinetischen Theorie der Warme geforderte 

Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Ann. der 
Physik, 17, 549-560. 

 
Kolmogorov, A. N. (1941) The local structure of turbulence in incompressible viscous 

fluid for very large Reynolds numbers. Dokl. Akad. Nauk. 30, 301-305.   
 
Langevin, P. (1908) Sur la th'eorie du mouvement brownien. Comptes. Rendues, 146, 

530-533. 
 
Monin, A. S., Yaglom, A. M. (1975) Statistical Fluid Mechanics. Vol. 2, MIT Press, 

Cambridge, Massachusetts. 
 
Obukhov, A. M. (1959) Description of turbulence in terms of Lagrangian variables. Adv. 

Geophys., 6, 113-116. 
 
Pope, S. B. (1985) PDF methods of turbulent reactive flows. Prog. Energy Combust. Sci., 

11, 119-192. 
 
Pope, S. B. (1987) Consistency conditions for random-walk models of turbulent 

dispersion. Phys. Fluids, 30, 2374-2379. 
 
Pope, S. B. (2000) Turbulent Flows. Cambridge University Press, Cambridge. 
 
Richardson, L. F. (1926) Atmospheric diffusion shown on a distance-neighbor graph. 

Proc. Roy. Soc. Lond. A, 110, 709-737. 
 
Rodean, H. C. (1996) Stochastic Lagrangian Models of Turbulent Diffusion. Monograph 

No. 48, American Meteorological Society, Boston, Massachusetts. 
 
Sawford, B. L. (1985) Lagrangian statistical simulation of concentration mean and 

fluctuation fields. J. Appl. Meteor., 24, 1152-1166. 
 

 25



Sawford, B. L. (1991) Reynolds number effects in Lagrangian stochastic models of 
turbulent dispersion. Phys. Fluids. 3, 1577-1586. 

 
Sawford, B. L. (1993) Recent developments in the Lagrangian stochastic theory of 

turbulent dispersion. Boundary-Layer Meteor., 62, 197-215. 
 
Smoluchowski, M. von (1906) Zur kinetischen Theorie der Brownschen 

Molekularbewegung und der Suspensionen. Ann. Phys., 21, 756-780. 
 
Taylor, G. I. (1921) Diffusion by continuous movements. Proc. Lond. Math. Soc., 20, 

196-211. 
 
Thomson, D. J. (1987) Criteria for the selection of stochastic models of particle 

trajectories in turbulent flows. J. Fluid Mech. 180, 529-556. 
 
Thomson, D. J. (1990) A Stochastic model for the motion of particle pairs in isotropic 

high-Reynolds-number turbulence, and its application to the problem of 
concentration variance. J. Fluid Mech., 210, 113-153. 

 
Wilson, J. D., and Sawford, B. L. (1996) Review of Lagrangian stochastic models for 

trajectories in the turbulent atmosphere. Boundary-Layer Meteor., 78, 191-210. 

 26



CHAPTER 3 

 

FIELD MEASUREMENTS AND ESTIMATION OF EMISSION STRENGTH AND 

POLLUTANT CONCENTRATIONS BY LAGRANGIAN PARTICLE MODELING  

 

Lagrangian particle modeling typically requires detailed information of a 

turbulent flow by which the simulated trajectory of a particle can be properly 

characterized, resulting in accurate model predictions.   In its applications to dispersion 

problems in the atmospheric boundary layer (ABL), such information can be derived 

through similarity theory for the ABL by which a turbulence quantity or statistic is 

expressed as a function of elevation and a set of scaling parameters.  Advances in theories 

and measurements help increase our knowledge and understanding of the physics of the 

ABL and continuously improve the soundness of the similarity-based formulation for 

various turbulence statistics.  In this chapter, a Lagrangian particle model (LPM) is 

constructed, and all turbulence statistics required by the model are quantified by 

similarity-based interpolation formulas that have been proposed for the ABL.   The LPM 

implemented here will be used as a platform for further analysis (specifically, uncertainty 

analysis) in the next chapter.  Model predictions are to be compared to field measurement 

data to examine the capability of the model.  Two field studies chosen for comparison are 

the Rubbertown field study and the Project Prairie Grass (PPG) experiments, as discussed 

in Chapter 1.  The details of each field study and the comparison between model results 

and field data for each study are given here.   
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3.1. Rubbertown Field Study  

The Rubbertown field study was conducted at the Dupont Dow Facility in the 

Rubbertown industrial complex, Louisville, Kentucky on June 20-23, 2000.  The 

objectives of the study were to test the performance of a non-Doppler laser wind sensor 

(LWS) developed by the Georgia Tech Reasearch Institute (GTRI) and to conduct a 

short-range dispersion experiment (GTRI, 2001).  Results from the dispersion experiment 

were to be compared to predictions given by the LPM and using such data to assess the 

ability of the LPM.  Figure 3-1a displays the aerial view of the Rubbertown area and its 

surroundings, and Figure 3-1b shows the enlarged view of the Dupont Dow Facility.  The 

overall area within a radius of 5 km of the Dupont Dow Facility is industrial and 

residential, and its terrain is generally flat but highly non-uniform.  There was no 

dispersion experiment during the first three days in the field due to weather constraints 

and the preparation, calibrations, and tests of all instruments.  The dispersion experiment 

was performed in the afternoon of the final day of the study (June, 23) when weather 

condition was mildly humid (≈ 50-60% relative humidity), and partly cloudy (≈ 1/4 sky).   

In the experiment, sulfur hexafluoride (SF6) was released from a laboratory-grade 

SF6 gas cylinder (>99% pure, molecular weight = 146.0) in the backyard area of the 

Dupont Dow Facility at a height of 1.5 m above the ground.  SF6 was chosen as a tracer 

gas because of its chemical inertness to reactions and absorption.  Furthermore, it can be 

detected at low levels by various measurement techniques.  Another reason is that SF6 is 

non-toxic and non-flammable, which is of safety concern for the area.  A continuous 
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a) 

 
 
 
 
  b)  

 
 

Figure 3-1. Aerial views of: a) Rubbertown area and b) Dupont Dow Facility 
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release of 40 lpm (equivalent to 3.9 kg s−1 at the field condition) of SF6 began at 14:00 

and ended at 16:30.  Figure 3-2 shows the SF6 release unit used in the field study.  A 

number of different instruments were employed to collect concentration and 

meteorological data, and they were set up at two chosen sites.  The first site was an open 

area adjacent to the Nitrogen Extracting Facility located approximately 400 m from the 

release location in the northeast direction (≈ 30° from the north).  There was a long tree 

line 3 to 4 m high above the ground and 40 m away in front of the setup.  Also, a small 

building stood 30 m aside of the setup.  The team experienced difficulty finding an ideal 

measurement site that was close to the release point.  A Fourier transform infrared 

spectrometer (FTIR) and a compact meteorological station were stationed at this site.  

The second site was a large grass area of the Chickasaw Park, approximately 2.3 km 

away from the release pointing the northeastern direction (≈ 20° from the north).  At this 

site, an FTIR, two ultrasonic anemometers (UAs), a bag-sampling unit, the LWS, and a 

scintillometer were installed.  The open paths of the FTIRs, LWS, and scintillometer 

were 100-150 m long and oriented approximately perpendicular to the wind direction at 

1.5 m above the ground.  The local wind direction prior to setup was roughly determined 

using a wind vane and a smoke candle.  The FTIRs were set to collect SF6 data at 1-min 

intervals.   Wind data from the scintillometer were used for calibrating and testing the 

LWS and not for calculating meteorological parameters here.  The first UA was 2-axis 

with an output frequency of 1.99 s and installed onto a fixed mast at 4 m above the 

ground and recorded simultaneously two horizontal wind components (perpendicular to 

one another).  The second UA was 2-axis with an output frequency of 0.99 s, equipped 
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Figure 3-2. SF6 release unit  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-3. Bag-sampling unit  
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With a temperature sensor, installed onto the same mast at approximately the same height 

as the first UA.  Its output frequency is 0.99 s.  It recorded vertical wind velocity.  An 

additional data set of horizontal wind velocity was obtained from the LWS.  Thirteen 1-

liter Tedlar-PVF bags were used for continuously sampling the ambient air and hung on a 

pole at a height of 2.0 m from the ground, as shown in Figure 3-3.  An air pump filled 

each bag for 15 min.  The bag sampling started at 13:45 and ended at 17:00.   Figure 3-4 

shows the instrument setup at the Chickasaw Park, and Figure 3-5 shows the graphic 

representation of the two measurement sites and the release location.  

Wind and temperature data obtained at the second site (i.e. the Chickasaw Park) 

were used to estimate several meteorological parameters, including the Monin-Obukhov 

length (L), friction velocity ( ), surface roughness height (z*u o), and mean wind direction 

(θ) clockwise from the direction of the release location and the Chickasaw Park.  L 

represents the height above the ground surface at which the mechanical turbulence 

production balances the thermal production.  This provides a measure of stability of the 

ABL.  By definition,  

 

,
3
*

Twkg
TuL

′′
−

=            (3.1) 

 

where g is the gravitational acceleration (= 9.81 m s−2), k is the von Karman constant (≈ 

0.4), T is the near-surface temperature (K), T ′  is the fluctuation component of T, w′  is 

the fluctuating component of vertical velocity, , Tw ′′  is the vertical turbulent heat flux, 
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Figure 3-4. Instrument setup at the Chickasaw Park 
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and  is the ensemble average (equivalent to the time average in this case) of a 

variable.  represents the surface shear stress or momentum transfer onto the ground by 

the adjacent air.  From the surface-flux profile relationship in the surface boundary layer, 

the mean horizontal velocity (U) is governed by a logarithmic law and expressed by (van 

Ulden and Holtslag, 1985): 
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The function ψM is the Businger stability function that is defined by 
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where π = 3.14159265…, , and z is the height or elevation above the 

ground.  In unstable conditions, another important scaling parameter is convective 

velocity scale ( ) that is related to  by the relation 
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where h is the mixing height of the ABL and its value is typically large, up to 1-2 km 

under strongly convective conditions. The value of h was not available in the PPG report 

but assumed to be large in this work (here, 1 km or 1000 m).  van Ulden and Holtslag 

(1985) emphasized that the forms of ψM given in Eqs. (3.3) and (3.4) are valid only for z 

< L but, in unstable conditions, Eq. (3.3) can be used for z >> L (maybe even up to z = h) 

and that, for stable conditions, an alternative form is recommended for z > L: 
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For more details of the measurement instruments and their setup, refer to GTRI (2001) 

Table 3-1 gives a summary of meteorological parameters measured or derived in 

the field study.  Note that the results in the table were processed only from time-series 

data (given in Appendix A of the thesis) measured during 14:30-15:30 because of the 

presence of non-stationarity for a longer time window.  Obtained from solving Eqs. (3.1) 

and (3.2) for z  = 1.6 and 4 m, the values of L, , and z*u o equal −5.3 m, 0.19 m s−1, and 

0.35 m, respectively.  The small negative L suggests a highly unstable or strongly 

convective condition.  For comparison with model predictions, SF6 concentrations from 

the FTIR at the Nitrogen Extracting Facility and the bag sampling at the Chickasaw Park 

were used because concentrations were extremely low at the Chickasaw Park and could 

not be detected by the FTIR.  In other words, its minimum detectable level is not low (or 

sensitive) enough to measure such low concentrations.  Figures 3-6 and 3-7 show the 
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Table 3-1. Meteorological parameters in the Rubbertown field study 

Variable Unit Value Measurement
 Height (m)

U (4) m s−1 0.75 4.0
U (1.6) m s-1 0.50 1.6
〈w ′ T ′ 〉 K m s−1 0.09 1.6

T K 306.0 1.6
θ degree 9.9 4.0
L m -5.3
u * m s−1 0.19  
z o m 0.35
h m 1000a

w * m s−1 1.43

a : Assumed to be large for a strongly convective condition
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Figure 3-6. SF6 concentrations at the Nitrogen Extracting Facility by the FTIR 
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Figure 3-7. SF6 concentrations at the Chickasaw Park by bag sampling and GC-ECD 
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time series of SF6 from the two measurement sites.  The former is from the FTIR whereas 

the latter is from the bag samples later analyzed by gas chromatography using electron-

capture device (GC-ECD) with the assistance of Dr. Monique Leclerc of the University 

of Georgia.  The time series in Figure 3-6 is somewhat intermittent, being zero 

(specifically, below the minimum detectable level of the GC-ECD) for some periods.  

Like the wind data, the mean concentration of SF6 at each location is a time average over 

the period of 14:30-15:30.  The background SF6 concentration was found to 

approximately equal 1.9 ppbv based on the bag sampling conducted in the early period of 

measurement, which is much higher than the typical values found in the literature (≈ 3-5 

pptv).  Some possible reasons for this large difference are that, due to a limited number of 

air samples collected from the field, calibrating the GC-ECD could not be performed 

comprehensively or that there were unknown sources of SF6 in the area and its vicinity.  

The time-series data presented in Figure 3-6 are of the measured concentrations less the 

background concentration.  The mean concentrations that are averaged over the chosen 

time window at the Nitrogen Extracting Facility and the Chickasaw Park were found to 

eqaul 0.23 ppmm (parts per million by mass) (equivalent to 260 µg m-3 at the field 

condition) and 6.4 ppbv (parts per billion by volume) (equivalent to 37 µg m-3 at the field 

condition), respectively.   

 

 

3.2. Comparison of Concentrations from the Rubbertown Field Study and the LPM  

The LPM developed in the previous chapter was implemented to calculate the SF6 

concentrations at both measurement locations, based on the field conditions described 
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above.  The drift coefficient of the model is given to take the simplest form based on a 

Gaussian probability density function (pdf) of velocity, i.e.  
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All variables in Eqs. (3.7) and (3.8) are defined in the previous chapter.  It has been 

shown that velocity pdfs in unstable conditions are typically characterized by a 

significant degree of positive skewness (Baerentsen and Berkowicz, 1984; Luhar et al., 

1996; Anfossi et al., 1997).  However, incorporating higher-than-second-order moments 

of velocity with an appropriate closure for a multidimensional LPM is known to be very 

difficult and not adequately advanced.  Therefore, the above-specified drift coefficient is 

regarded as an ad hoc approach to the problem.  Flesch and Wilson (1992), as well as 

Leuzzi and Monti (1998), examined prediction performance between their complex 

LPMs and an LPM with the simplest diffusion coefficient and surprisingly found that the 

latter was capable of yielding satisfactory results (or even superior results).    
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An idealized condition was assumed, in which atmospheric turbulence is 

stationary and horizontally homogeneous and the turning of the wind aloft is neglected.  

The stationary assumption is generally considered acceptable for short-range dispersion.  

Accordingly, any derivative terms with respect to t in Eq. (3.8) become zero.  x3 denotes 

the vertical distance (or elevation) above the ground, and U3 is set to zero.  The mean 

wind in the horizontal plane is aligned parallel to the x1 axis and denoted by U as 

previously.  It follows that U2, U3, 12τ  (= 21τ ), and 23τ  (= 32τ ), and any derivative terms 

with respect to x1 or x2 equal zero, simplifying the calculation of Eq. (3.8).  For 

convenience, x1, x2, and x3 will be replaced by x, y, and z, respectively, and 11τ , 22τ , 33τ , 

and 13τ  (= 31τ ) will be rewritten as , , , and 2
uσ 2

vσ 2
wσ uwτ , respectively.  Eqs (3.2) and 

(3.3) are used to compute U.  The rest of the turbulence statistics were determined by the 

following similarity-based interpolation formulas for L < 0 as a function of elevation.   

 

� Variances and covariance: From Rodean (1996, Chapter 12), 
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� Mean energy dissipation: From Rodean (1996, Chapter 12), 
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The relations in Eqs. (3.9)-(3.11) satisfy the statistical inequality  for z222
wuuw σστ ≤ o ≤ z ≤ 

h.  In simulation, perfect reflection of a particle when encountering the ABL top (i.e. z = 

h) and the horizontal plane at z = zo was carried out.  Following Flesch et al. (1995), the 

fluctuating velocity components in both along-wind and vertical directions are reversed 

to their opposite signs after reflection.  

It is also of practical interest to compare the results from the LPM to those given 

by a traditional Gaussian plume model (GPM).   In the GPM, the mean concentration at 

receptor location (x, y, z) is calculated as follows (Schnelle and Dey, 2000, p. 11-2): 
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where Q is the emission strength, U is the mean wind speed that is aligned with the x-

axis, yσ  is the lateral dispersion parameter along the y-axis, zσ  is the vertical dispersion 

parameter along the z-axis, and  is the source height.   The expression of E is given by sh
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Eqs. (3.13) and (3.14) account for complete reflection of the pollutant mass from the 

ground and the ABL top.  In practice, k in Eq. (3.14) should be a sufficiently large integer 

(here, k = 5).   The corresponding dimensions of Q and yσ  (or zσ ) are Mass Time−1 and 

Length, respectively.  Unlike the LPM, the dispersion parameterization for the above 

GPM is not explicitly based on a number of basic meteorological parameters but the 

Pasquill stability classification.  Since the dispersion in question is under very unstable 

condition, it can be approximated as Pasquill stability class A in which the lateral and 

vertical dispersion parameters are expressed as a function of x.    From Briggs (1972), 

these parameters are also dependent on topography that is categorized into open-country 

(or rural) and urban conditions.   For stability class A with 100 < x < 10000 m (Schnelle 

and Dey, 2000, p. 7-4),  
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Figure 3-8 shows the mean ground-level concentrations (shortly, concentrations 

along the mean wind direction aligned with both the source and the Nitrogen Extracting 
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Facility (i.e. along the plume centerline) while Figure 3-9 shows those in the crosswind or 

lateral direction at the Chickasaw Park.  In both figures, five different sets of 

concentration are given, corresponding to the LPM and the GPM parameterized for rural 

and urban background. Two different values of the mean wind speed in Eq. (3.13) were 

representatively used: U at z = 1.5 m that is the source height and U at z = 10 m that is the 

height normally used for dispersion from a near-ground source.  They are denoted by 

U(1.5) and U(10), respectively.  A plus (+) sign corresponds to the concentration 

measured at each location in the field study.    As seen, the GPMs mostly give lower 

estimates of concentration than the LPM models, for the spatial domain in question.  

Furthermore, concentrations from the GPM for the rural background are lower that the 

urban background and sensitive to the magnitude of mean wind speed used in calculation.  

It is straightforward from Eq. (3.13) that using U(1.5) in the calculations yields higher 

concentrations than U(10) for the GPM.  Along the plume centerline, concentrations fall 

off rapidly for the GPM, approximately with an exponent of –2 with respect to the 

distance from the source while the falloff for the LPM is relatively low.  Differences 

between predictions given by the LPM and by the GPM increase with distance.  At the 

Nitrogen Extracting Facility, the difference is approximately an order of magnitude and 

becomes two orders of magnitude at a distance of 2000 m., and the measured 

concentration agrees most with the prediction by the GPM for urban background using 

U(1.5).  In the crosswind direction, concentration decreases with distance from the plume 

centerline.  The rates of such decreases in the GPMs are however small compared to that 

in the LPM, indicating that the width of the corresponding crosswind 
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Figure 3-8. Concentrations along the plume centerline by the LPM and the GPM at the 
Nitrogen Extracting Facility 
 
 
 
 

 
 
Figure 3-9. Concentrations in the crosswind direction (through the Chickasaw Park) by 
the LPM and the GPM at the Chickasaw Park 
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concentration profile by the LPM is smaller than those by the GPM.  There is a large 

difference of approximately two orders of magnitude between predictions given by the 

LPM and by the GPM, especially close to the plume centerline.  At the Chickasaw Park, 

the measured concentration appears to stay close to the fall-off trend given by the LPM. 

Nevertheless, the difference is relatively small but the measured concentration overshoots 

the predictions by both models by about one order of magnitude.    

It is fair to say that both LPM and GPM applied to the Rubbertown field study do 

not show good agreement with the measured concentrations.  Although the GPM for an 

urban background performed well at the Nitrogen Extracting Facility, all models give 

underestimates at the Chickasaw Park.  One major deficiency of the above comparison is 

lack of a sufficiently large number of measured concentrations (here, only two data points 

were used), leading to statistical inconclusiveness in model evaluation.  Moreover, the 

parameterization of turbulence and dispersion parameters for the models used in this 

application is essentially limited only to the idealized condition where the degree of non-

uniformity of a terrain should be minimal, which is in fact not the case here.  

Characterizing the turbulence field of a highly non-uniform terrain is important for the 

dispersion over a short-range scale but such information is not available for the study. 

Therefore, it is important to use a more appropriate data set for comparison. Large 

differences between model predictions and measurements in the comparison could also 

result from inaccuracy in estimating meteorological parameters, some of which may be 

influential to a model output and the errors of their estimates considerably affect the 

model output.   The structural formulation of the LPM in question is also important.   In 

the field study, the dispersion took place under a strongly convective condition.  Under 

46 



convective conditions, the pdf of vertical velocity tends to be positively skewed due to 

the asymmetry of updraft and downdraft (Baerentsen and Berkowicz, 1984; Luhar et al., 

1996).  Thus, the assumption of a Gaussian velocity pdf may not be well represented.  

However, incorporating higher-order moments of velocity into the Lagrangian particle 

modeling has been known to be difficult and has not been sufficiently advanced.   

 

 

3.3. Project Prairie Grass (PPG) Experiments  

 Given the experimental issues encountered when using the data of the 

Rubbertown field study, it became important to find an appropriate data set to assess 

model capabilities.  In doing so, a data set from the PPG experiments (Barad, 1958) was 

adopted.  The PPG experiments are considered the most comprehensive field study of 

short-range dispersion conducted in the past 50 years in North America.  There were a 

total of 70 runs conducted under both stable and unstable conditions.  The field terrain 

was smooth and grass-covered.  Sulfur dioxide (SO2) was released from a continuous 

point source.  Constant release rates ranged from 39 to 104 g s−1.  Various types of 

instruments were employed to collect meteorological data simultaneously.  There was no 

report of material deposition in the experiments, and it should be small over the distances 

studied.  Ground-level concentrations associated with the release were measured at a 

height of 1.5 m along crosswind arcs at intervals of 2° at 50, 100, 200, and 400 m and at 

intervals of 1° at 800 m.   
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3.4. Comparison of Concentrations from the PPG Experiments and the LPM 

 Ground-level concentrations from 25 runs under stable conditions (Run Nos. 17, 

18, 21, 22, 23, 24, 28, 29, 32, 35, 36, 37, 38, 39, 40, 41, 42, 46, 53, 54, 55, 56, 58, 59, and 

60) were chosen for comparison with those simulated by the model, and their reported 

values are given in Appendix B of the thesis.  In these runs, the source was set at 0.46 m 

above the ground.  A set of meteorological and terrain data (i.e. L, , and z*u o) 

corresponding to the chosen runs, processed by van Ulden (1978), were adopted as inputs 

for the model.  The previous LPM was used but its turbulence statistics were 

parameterized by a different set of similarity-based interpolation formulas (for L > 0).  

Similar to before, the assumption of a stationary and horizontally homogeneous turbulent 

flow is assumed.  The mean horizontal wind speed (U) was determined by Eqs. (3.2) and 

(3.6).  The last term in the brackets of Eq. (3.2) was neglected because the value of zo in 

the PPG experiments is very small (0.008 m), according to van Ulden (1978).  The rest of 

statistics were computed using the following formulas: 

 

� Variances and covariance:  A number of studies express the second-order moments of 

velocity as follows: 
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A large variation in the reported values of α, cu, cv, and cw is found in the literature.  For 

instance, Hanna (1982) uses: α = 2, cu = 4.0, and cv = cw = 1.7; Arya (1984): α = 2, cu = 

5.8 ≥ cv ≥ cw = 2.6; Nieuwstadt (1984): α = 1.5, cw = 1.96; Sorbjan (1986), α = 2, cw = 2.5; 

and Lenschow et al. (1988): α = 1.75, cu = cv = 4.5, and cw = 3.1.   From the Monin-

Obukhov theory, the turbulence statistics in Eq. (3.16) are approximately constant for 

small heights.  A literature survey by Panofsky and Dutton (1984, p. 160) suggests cu = 

4.8-6.3, cv = 3.0-4.8, and cw = 1.2-2.0.  A review by Dias et al. (1995) gives cw = 1.3-2.3.   

It is seen that the above values of α, cu, cv, and cw are 1.5-2, 4.0-6.3, 1.7-5.8, and 1.2-3.1, 

respectively.  For the modeling here, α = 2, cu = 4.0, cv = 3.0, and cw = 1.5 were chosen, 

and these values meet the inequality  for all z ≤ h.   222
wuuw σστ ≤

 

� Mean energy dissipation rate:  Following Sorbjan (1986) with α in Eq. (3.16) equal to 

2,   
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Note that since the PPG dispersion took place for a short scale of < 1 km, it was assumed 

that the dispersion occurred within in the surface boundary layer.  As such, the reduced 

forms of the formulas in Eqs. (3.16) and (3.17) by taking the limit  were used.   0/ →hz

The results from comparisons between measurement data and model predictions are 

shown in Figures 3-10 and 3-11.  In the figures, CIC denotes the crosswind-integrated 
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Figure 3-10. Comparison of values from the PPG data and the LPM *CIC

 
 
 
 

 
 

Figure 3-11. Comparison of values from the PPG data and the GPM *CIC
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concentration (defined as , where C is the (mean ground-level) 

concentration at a particular location and s is the distance along an arc) while 

, where Q is the release rate.  The corresponding dimensions of Q, C, 

CIC, and are Mass Time

sCCIC s darc∈∫=

QCICCIC /* =

*CIC −1, Mass Length−3, Mass Length−2, and Length−2 Time, 

respectively.  In Figure 3-10, the  values from 25 runs under stable conditions (Run 

Nos. 17, 18, 21, 22, 23, 24, 28, 29, 32, 35, 36, 37, 38, 39, 40, 41, 42, 46, 53, 54, 55, 56, 

58, 59, and 60) and those from the LPM are compared.  In these runs, the source was set 

at 0.46 m above the ground.  It is seen that a good fit with a high coefficient of 

determination (

*CIC

2R ) of 0.91 are achieved, though a majority of model values are slightly 

lower than the PPG data.   In Figure 3-11, the  values from the same 25 runs and 

those from the GPM are shown.   Note that Brigg’s parameterization of the dispersion 

parameters for Gaussian plume modeling is not based on basic meteorological parameters 

but Pasquill stabilities instead.  For the purpose of comparison, it is assumed here that, for 

any PPG run with L ≤ 50, the dispersion is classified as Pasquill stability class E (i.e. 

weakly stable) and, for that with L >50, it corresponds to class F (i.e. moderately stable).  

The expressions of the lateral and vertical dispersion parameters for these classes given 

by Briggs for open-country (or rural) with 100 < x < 10000 m (Schnelle and Dey, 2000, 

p. 7-4) are as follows: For class E, 

*CIC
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For class F,  
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From the figure, the GPM performs well for region A where most data points are 

associated with weakly stable conditions, clearly, tends to give underestimates for region 

B where most data points are associated with near-source receptors and moderately stable 

conditions.    The overall fit by the GPM has a much lower R2 value (0.49) than that by 

the LPM.    

 To extend the above results, it is possible to convert predicted concentration data 

to emission strength data simply using their linear relationship in Section 2.4, Chapter 2).   

The results from doing so are shown in Figures 3.12 and 3.13.   Since most of Q values 

used in the PPG experiments fall in a narrow range of 35-45 g s−1, the plots in the figures 

become fairly scattered.  Thus, it is appropriate to use a common measure in evaluating 

the performance of both models, which is normalized gross error (µ) that is defined by 

(Russell and Dennis, 2000) 
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where N is the number of data point, Qo is the reference emission strength , and Qm is the 

emission strength by a model.    Table 3.2 gives a summary of normalized gross errors of 

 

 

52 



 

 

Figure 3-12. Comparison of Q values from the PPG data and the LPM 
 

 

 

Figure 3-13. Comparison of Q values from the PPG data and the GPM 
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Table 3-2. Normalized gross errors of emission strength by 
the LPM and the GPM based on the PPG data 

 

 

 

 

 

 

 

                       Gross error (µ )

LPM GPM

Overall (all data points) 22% 30%

Near-source receptors 19% 31%
Distant receptors 25% 30%

Weakly stable conditions 15% 13%
Moderately stable conditions 28% 45%
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emission strength estimated by the LPM and the GPM.    From the table, the normalized 

gross errors by the LPM are less than those by the GLP in almost every case (including 

the overall comparison based on all data points shown in Figures 3-12 and 3-13), except 

for dispersion under weakly stable conditions where both models performs comparably.   

It is apparent that the LPM yields more accurate estimates especially for receptors located 

near the source and dispersion under moderately stable conditions.  Note that, in the 

table, near-source receptors correspond to those on the 50-m and 100-m arcs.   

According to the above evaluation that the performance of the LPM is satisfactory 

based on the comprehensive PPG data.   Furthermore, to examine its prediction for lateral 

dispersion, concentration data in the PPG report were reconsidered.  Since the mean wind 

direction does not align with the measurement locations where maximum concentrations 

occur in many PPG runs.  However, those locations appear not to stay far from the mean 

wind direction for a certain runs.  Here, 10 PPG runs (Run Nos. 23, 24, 28, 37, 38, 39, 42, 

55, 56, and 59) are representatively chosen for comparison of point-wise concentrations 

(using reported data from sampling stations on each arc) and the results from doing so are 

shown in Figure 3-14.  It is seen that good agreement with a high R2 value (0.86) is 

obtained, though the data points associated with very low concentrations appear 

somewhat scattered, as seen in Figure 3-14b where a log-log scale is used.  

 

 

3.5. Summary
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Figure 3-14. Comparison of *C values from the PPG data and the LPM: 
a) linear-linear scale and b) log-log scale 

 

 

 



Comparison of mean ground-level concentrations predicted by the LPM with the 

two different data sets from the Rubbertown field study and the PPG experiments has 

been shown.  The basic meteorological parameters were quantified in both field studies, 

and the turbulence parameters required by the LPM were estimated using their similarity-

based interpolation formulas proposed in the literature.  Predictions by the traditional 

GPM were also given for comparison.   It has been shown that, for the Rubbertown field 

study, no satisfactory agreement was found for both models.  However, the GPM gave 

results that compared well at the Nitrogen Extracting Facility but not further downwind.  

Due to lack of a sufficiently large number of measured concentrations in the field study, 

model evaluation could not be properly concluded.  In addition, a limitation from using 

the parameterization of turbulence and dispersion parameters intended for a uniform 

terrain may have also caused uncertainty in model predictions since the background 

terrain of the field study is highly non-uniform.  Inaccuracy in estimating some 

meteorological parameters and the model formulation based on the assumption of a 

Gaussian velocity pdf under convective conditions could also affect model outputs as 

well.  The model evaluation using the PPG data was statistically well conducted due to 

the availability of a large data set and more appropriate field conditions.  That is, the PPG 

experiments were implemented over a smooth uniform terrain that is suitable for the 

applicability of the LPM here.  Overall agreement between model predictions by the 

LPM and field data chosen for stable conditions was achieved, though some large 

deviations exist at very low concentrations.   Since the LPM parameterized for stable 

conditions has performed well, it is then adopted as the platform for parametric 

uncertainty analysis in the following chapter.  

57 



References
 
Anfossi, D., Ferrero, E., Sacchetti, D., Trini Castelli, S. (1997) Comparison among 

empirical probability density functions of the vertical velocity in the surface layer 
based on higher order correlations. Boundary-Layer Meteor. 82, 193-218. 

 
Arya, S. P. S. (1984) Parametric relations for the atmospheric boundary layer. Boundary-

Layer Meteor. 30, 57-73. 
 
Baerentsen J. H., Berkowicz, R. (1984) Monte Carlo simulation of plume dispersion in 

the convective boundary layer. Atmos. Environ. 18, 701-712. 
 
Barad, M. L. (Ed.) (1958) Project Prairie Grass, A Field Program in Diffusion. Vol. 1. 

Geographical Research Paper No. 59, Air Force Cambridge Research Center, 
Belford, Massachusetts.   

 
Briggs, G. A. (1972) Diffusion Estimation for Small Emissions. In ERL, ARL USAEC 

Report ATDL-106, U.S. Atomic Energy Commission, Oak Ridge, Tennessee.  
 
Dias, N. L., Brutsaert, W., Wesely, M. L. (1995) Z-less stratification under stable 

conditions. Boundary-Layer Meteor. 75, 175-187. 
 
Du, S., Sawford, B. L., Wilson, J. D., Wilson, D. J. (1995) Estimation of the Kolmogorov 

constant (Co) for the Lagrangian structure function, using a second-order 
Lagrangian model of grid turbulence. Phys. Fluids 7, 3083-3090. 

 
Flesch, T. K., Wilson, J. D. (1992) A two-dimensional trajectory-simulation model for 

non-Gaussian, inhomogeneous turbulence within plant canopies. Boundary-Layer 
Meteor. 61, 349-374. 

 
Flesch, T. K., Wilson, J. D., Yee, E. (1995) Backward-time Lagrangian stochastic 

dispersion models and their application to estimate gaseous emissions. J. Appl. 
Meteor. 34, 1320-1332. 

 
GTRI (2001) Remote Sensing Technology to Support the Toxics Release Inventory.  

Technical Report, Georgia Tech Research Institute, Atlanta.  
  
Hanna, S. R. (1982) Applications in air pollution modeling. in Atmospheric Turbulence 

and Air Pollution Modelling, edited by Nieuwstadt, F. T. M. and van Dop, H., D. 
Reidel Publishing, 37-68.   

 
Hanna, S. R. (1982) Applications in air pollution modeling. in Atmospheric Turbulence 

and Air Pollution Modelling, edited by Nieuwstadt, F. T. M. and van Dop, H., D. 
Reidel Publishing, 37-68.   

 

58 



Holtslag, A. A. M., Nieuwstadt, F. T. M. (1986) Scaling the atmospheric boundary layer. 
Boundary-Layer Meteor. 36, 201-209. 

 
Law, A. M., Kelton, W. D. (2000) Simulation Modeling and Analysis. McGraw-Hill, 

Boston, Massachusetts. 
 
Lenschow, D. H., Li, X. S., Zhu, C. J., Stankov, B. B. (1988) The stably stratified 

boundary layer over the Great Plains. I. Mean and turbulence structure. Boundary-
Layer Meteor. 42, 95-121. 

 
Leuzzi, G., Monti, P. (1998) Particle trajectory simulation of dispersion around a 

building, Atmos. Environ. 32. 203-214. 
 
Luhar, A. K., Hibberd, M. F., Hurley, P. J. (1996) Comparison of closure schemes used 

to specify the velocity PDF in Lagrangian stochastic dispersion models for 
convective conditions. Atmos. Environ. 30, 1407-1418. 

 
Nieuwstadt, F. T. M. (1984) The turbulent structure of the stable, nocturnal boundary 

layer. J. Atmos. Sci. 41, 2202-2216. 
 
Panofsky, H. A., Dutton, J. A. (1984) Atmospheric Turbulence: Models and Methods for 

Engineering Applications. Wiley, New York.  
 
Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. (1992) Numerical 

Recipes in FORTRAN. Cambridge University Press, Cambridge. 
 
Rodean, H. C. (1996) Stochastic Lagrangian Models of Turbulent Diffusion. Monograph 

No. 48, American Meteorological Society, Boston.  
 
Russell, A. G., Dennis, R. L. (2000) NARSTO critical review of photochemical models 

and modeling. Atmos. Environ. 34, 2283-2324. 
 
Schnelle, K. B., Dey, P. R. (2000) Atmospheric Dispersion Modeling Compliance Guide. 

McGraw-Hill, New York. 
 
Sorbjan, Z. (1986) On similarity in the atmospheric boundary layer. Boundary-Layer 

Meteor. 34, 377-397. 
 
van Ulden, A. P. (1978) Simple estimates for vertical diffusion from sources near the 

ground. Atmos. Environ. 12, 2125-2129. 
 
van Ulden, A., Holtslag, A. (1985) Estimation of atmospheric boundary layer parameters 

for diffusion applications. J. Climate Appl. Meteor. 24, 1196-1207. 

59 



CHAPTER 4 

 

EFFECTS OF UNCERTAINTIES IN PARAMETERS OF A LAGRANGIAN 

PARTICLE MODEL ON MEAN GROUND-LEVEL CONCENTRATIONS UNDER  

STABLE CONDITIONS 

(Coauthor: A. G. Russell) 

  

(This chapter is an extended version of the preliminary work: Manomaiphiboon, K., 

Russell, A. G. (2003) Uncertainty study of a Lagrangian particle model for short-range 

dispersion under stable and neutral conditions. Proceedings of the 96th annual conference 

of the Air and Waste Management Association, San Diego)  

 

 

Abstract 

 This work evaluates the effects of uncertainties in five parameters or inputs of a 

source-receptor Lagrangian particle model on mean ground-level concentrations.  The 

scope of work is short-range dispersion in the atmospheric boundary layer under slightly 

and moderately stable conditions over smooth flat terrain within 3 km downwind from a 

continuous point source located near the ground.  Model inputs include four 

meteorological parameters (Monin-Obukhov length, friction velocity, roughness height, 

and mixing height) and the universal constant in the random component of the model.  

Model outputs of interest are ground-level mean concentrations at a number of receptors 

downwind from the source.  The analysis was performed for the atmospheric conditions 
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corresponding to stability indices (defined as the ratio of mixing height to Monin-

Obukhov length) of 1.3, 2.5, and 4.2.  Input uncertainties were propagated through the 

model using Monte Carlo simulations with Latin hypercube sampling.  Linear regression 

modeling was used to statistically partition an output uncertainty and determine the 

relative importance of an input to an output.  Additional analysis of the half width of 

ground-level mean concentration contours at a distance from the source was performed 

but in a limited manner.  It is shown that, among the meteorological parameters, friction 

velocity is an important input whose uncertainties contribute significantly to the 

concentration uncertainties.  The uncertainty contributions from Monin-Obukhov length 

and mixing height are generally not important for most receptors but both tend to increase 

in importance when the degree of stability decreases.  Another influential input is the 

universal constant whose uncertainty contribution often dominates those from most other 

inputs.  However, it has little or no influence for some distances in the lateral direction. 

The overall contribution from roughness height was found to be slight.  For the half width 

of concentration contours, the two largest contributors to uncertainty are the universal 

constant and Monin-Obukhov length whereas the contributions from the other inputs are 

not significant.  

 

 

4.1. Introduction 

 Air quality modeling integrates our knowledge of how physical and chemical 

processes affect pollutants in the atmosphere.  One major category of air quality 

modeling deals with the dispersion of pollutants in the atmospheric boundary layer 
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(ABL).  A large number of air dispersion models have been developed for different 

purposes and applications.  The most well known are Gaussian plume models in which 

pollutant concentrations at downwind locations are postulated to be distributed in a 

Gaussian form or its variants (Turner, 1970).  Gaussian plume modeling is the basis for 

several regulatory models of the U. S. Environmental Protection Agency, such as the 

Industrial Source Complex (ISC) model and, recently, the AERMOD model (U.S. EPA, 

2004).  Examples of other dispersion models are the similarity-based approximations 

(van Ulden, 1978; Briggs, 1982), the hybrid plume dispersion model (Hanna and Paine, 

1989), the second-order closure integrated model plume (Sykes et al., 1984), and the 

Lagrangian particle (or stochastic) model (Thomson, 1987; Wilson and Sawford, 1996).  

Lagrangian particle modeling has been widely applied to turbulent dispersion problems, 

both in the ABL (e.g. Luhar and Britter, 1989; Flesch et al., 1995; Rotach et al., 1996; 

Venkatram and Du, 1997; Rao, 1999) and in the built environment (e.g. Naslund et al., 

1994; Leuzzi and Monti, 1998).  In the modeling, the migration of a pollutant is treated as 

a stochastic process in a Lagrangian coordinate reference.  This type of modeling has 

proven to give relatively accurate results because it accounts for extensive details of a 

turbulent flow governing dispersion mechanisms.  However, it generally requires a large 

computational time in implementation due to a large number of particle trajectories 

simulated.    

Recent air dispersion models have taken advantage of advances in understanding 

the physics of the ABL and incorporated more details of atmospheric turbulence and 

meteorology, leading to greater soundness and validity in their formulations and 

applications.  Nevertheless, such information may not be precisely known, routinely 
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measured, or completely available for preprocessing as model parameters or inputs, 

which gives rise to some level of uncertainty in the modeling process.  Uncertainty in a 

computer model can generally be categorized as parametric uncertainty and structural 

uncertainty (Tatang et al., 1997).   The former is associated with incomplete knowledge 

of the exact values of model parameters while the latter is from the inaccuracy of 

treatment or formulation of physical and chemical processes, inexact numerical scheme, 

and inadequate model resolution.  Determining how model outputs are affected by such 

uncertainty is important in that it not only helps to establish the confidence and reliability 

of the model outputs but also helps to specify influential model components or 

parameters.  In air quality modeling, this information is useful for model users and 

decision makers in model evaluation, risk assessment and air quality management.   

In this work, parametric uncertainty is addressed.  Several approaches to deal with 

parametric uncertainty have been developed and applied to environmental and 

geophysical problems.  The simplest method is the Taylor series approximation where the 

uncertainty in a model output (i.e. an output uncertainty) is approximately expressed as 

the summation of first-order (and, possibly, second-order) terms associated with the 

uncertainties in model inputs (i.e. input uncertainties).  One limitation of the method is 

that it is a local approach, considering the behavior of a model output only in the vicinity 

of its base (i.e. best-estimate or nominal) case (Morgan and Henrion, 1990, p. 176).  It 

may not be applicable for a nonlinear model with large perturbations or uncertainties in 

inputs.  Monte Carlo (MC) methods are the most straightforward in propagating 

parametric uncertainty through a computer model.  They are implemented under a 

probabilistic framework in which input uncertainties are characterized by probability 
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distributions and sampled by the simple random sampling (SRS) method.  The cost of 

implementing MC simulations is high because a large set of samples is required in order 

to achieve a high confidence level in the statistical inference of results.  To reduce 

computational time, the Latin hypercube sampling (LHS) method (Iman and 

Shortencarier, 1984) may be used as an alternative to the SRS.  The LHS ensures 

adequate coverage of a distribution during sampling.  However, it is known that 

constructing tolerance intervals for statistical quantities are not suitable for results from 

the LHS or, if so, they can only be approximate.  Besides those methods, other numerical 

techniques developed for parametric uncertainty are the Fourier amplitude sensitivity test 

method (McRae et al., 1982), the probability collocation method (Tatang et al., 1997), 

and the stochastic response surface modeling (Isukapalli et al., 1998). 

Many workers have examined parametric uncertainty using MC methods.  For 

short-range air dispersion models, Freeman et al. (1986) and Yegnan et al. (2002) studied 

the ISC model using the Taylor series approximation and compared results to those from 

MC simulations.  Irwin et al. (1987) determined the error bounds of area coverage of 

maximum ground-level concentrations predicted by a Gaussian plume model with a 

plume rise calculation.  Examples of other applications using MC methods are long-range 

transport of sulfur in atmosphere (Alcomo and Bartnicki, 1987), atmospheric nitrogen 

chemistry modeling (Derwent, 1987), reactivities of volatile organic compounds and 

emissions from fuels based on a photochemical mechanism model (Yang and Milford, 

1996), the urban airshed model (Hanna et al., 1998), a Lagrangian photochemical air 

parcel model (Bergin et al., 1999), and mesoscale sulfuric acid dispersion (Dabberdt and 
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Miller, 2000).  Russell and Dennis (2000) reviewed several aspects of uncertainties in 

regional air quality models. 

In this work, we present results from the uncertainty analysis of a Lagrangian 

particle model (LPM) for short-range dispersion in the ABL whose turbulence statistics 

are parameterized by similarity-based interpolation formulas.  The model inputs included 

in the analysis are four basic meteorological parameters (Monin-Obukhov length (L), 

friction velocity ( ), roughness height (z*u o), and mixing height (h)) and the universal 

constant in the random component of the model (Co).  The model outputs of interest are 

mean ground-level concentrations (shortly, concentrations) at a number of receptors 

downwind from a continuous point source located near the ground.  Here, the dispersion 

under stable conditions (L > 0) over smooth flat terrain is considered.  Six cases are 

studied and associated with three stable conditions corresponding to stability indices 

(defined by ) of 1.3, 2.5, and 4.2.  All input uncertainties are propagated through the 

model using MC simulations with the LHS.  Linear regression modeling is employed to 

statistically partition an output uncertainty and determine the relative importance of each 

input in terms of uncertainty contribution.  Additional analysis for the half width of 

concentration contours (estimated as the lateral distance equivalent to twice the standard 

deviation of a fitted Gaussian concentration profile) at a distance from the source is 

performed but in a limited manner.     

Lh /

 

 

4.2. LPM description 
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 In this section, the LPM used in this work is concisely described.  Following 

Thomson (1987) and Wilson and Sawford (1996), a joint process of a fluid particle’s 

position and velocity (x, u) in a turbulent flow evolves continuously with time in a 

Markov manner.  A pollutant particle is equivalently represented by a fluid particle that 

moves along a flow streamline.  In three dimensions, the joint process is expressed by the 

following set of stochastic differential equations  

 

,ddd
and,dd

jijii

ii

Wbtau
tux

+=
=

                                        (4.1) 

 

where i and j (= 1, 2, and 3) are the Cartesian directional indices,  is the 

drift coefficient in direction i, 

),,( taa ii ux≡

),( tbb ijij x≡  is the component (i, j) of the velocity-

independent diffusion coefficient, and dWj is the component j of uncorrelated Gaussian 

forcing with mean zero and variance dt.  The above variables are defined at time t.  The 

model is subject to two necessary conditions: the inertial subrange theory (Kolmogorov, 

1941) and the well-mixed condition (Thomson, 1987).  According to the former 

condition, bij takes the universal form  

 

                                                 (4.2) ,)( 2/1εδ oijij Cb =

 

where δij is the Kronecker delta function, Co is the dimensionless universal constant, and ε 

is the mean dissipation rate of turbulent kinetic energy.  The latter condition determines 
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the form of ai , which depends on the probability density function of (Eulerian) velocity 

(denoted by pE).  Here, pE is assumed to be Gaussian (i.e. normally distributed), i.e. 
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where π = 3.141592654 …, τ is the covariance matrix of velocity,  is the inverse 

matrix of τ, and U

1−τ

i is the mean (Eulerian) velocity in direction i.  The Gaussian character 

is used only as an approximation (i.e. not precise, as emphasized in Anfossi et al. (1997)).    

The simplest form of ai is used (Thomson, 1987):  
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Eqs. (4.1)-(4.5) are written in a tensor form where the summation over indices applies.  

The idealized condition was assumed in which atmospheric turbulence is stationary and 

horizontally homogeneous and the turning of the wind aloft is neglected.  The stationary 
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assumption is typically considered acceptable for short-range dispersion when the 

average travel time of pollutant particles is of order one hour or less (which is the case 

here).  Accordingly, any derivative terms with respect to t in Eq. (4.5) become zero.  

Here, x3 denotes the vertical distance (or elevation) above the ground, and U3 is set to 

zero.  The mean wind in the horizontal plane is aligned parallel to the x1 axis.  It follows 

that U2, U3, 12τ  (= 21τ ), and 23τ  (= 32τ ), and any derivative terms with respect to x1 or x2 

equal zero, simplifying the calculation of Eq. (4.5).  The rest of statistics required by the 

model were determined from similarity-based interpolation formulas as a function of 

elevation, and these are given in Appendix.  For convenience, x1, x2, and x3 will be 

replaced by x, y, and z, respectively, and U1, 11τ , 22τ , 33τ , and 13τ  (= 31τ ) will be 

rewritten as U, , , , and 2
uσ 2

vσ 2
wσ uwτ , respectively.   

 To examine the performance of the current LPM, dispersion data from the Project 

Prairie Grass (PPG) short-range dispersion experiments (Barad, 1958) were compared to 

model predictions.  In the PPG experiments, there were a total of 70 runs conducted 

under both stable and unstable conditions.  The field terrain was smooth and grass-

covered.  Sulfur dioxide (SO2) was released from a continuous point source.  Constant 

release rates ranged from 39 to 104 g s−1.  Various types of instruments were employed to 

collect meteorological data simultaneously.  There was no report of material deposition in 

the experiments.  Ground-level concentrations associated with the release were measured 

at a height of 1.5 m along crosswind arcs at intervals of 2° at 50, 100, 200, and 400 m and 

at intervals of 1° at 800 m.  A set of meteorological and terrain data from the PPG 

experiments processed by van Ulden (1978) were adopted as inputs for the model.  The 

results from comparisons between measurement data and model predictions are shown in 
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Figure 4-1.  In the figure, CIC denotes the crosswind-integrated (mean gound-level) 

concentration (defined as , where C is the concentration at a particular 

location and s is the distance along an arc) while , where Q is the release 

rate.  The corresponding dimensions of Q, C, CIC, and  are Mass Time

sCCIC s darc∈∫=

QCICCIC /* =

*CIC −1, Mass 

Length−3, Mass Length−2, and Length−2 Time, respectively.  In Figure 4-1a, the  

values from 25 runs under stable conditions (Run Nos. 

*CIC

17, 18, 21, 22, 23, 24, 28, 29, 32, 

35, 36, 37, 38, 39, 40, 41, 42, 46, 53, 54, 55, 56, 58, 59, and 60) and those from the model 

are compared.  In these runs, the source was set at 0.46 m above the ground.  It is seen 

that a good fit with a high coefficient of determination ( 2R ) of 0.91 are achieved, though 

the majority of model values is slightly lower than the PPG data.  To account for lateral 

dispersion, we reconsidered the concentration data in the PPG report and found that, in 

many runs, the mean wind direction does not align with the measurement locations where 

maximum concentrations occur.  However, those locations appear not to stay far from the 

mean wind direction for most runs.  To simplify the comparison, each measurement arc 

was divided into two intervals: inner (±5°) and outer.  The crosswind-integrated 

concentrations corresponding to these intervals were calculated for 17 PPG runs (out of 

25) (indicated by underlines).  The results are shown in Figure 4-1b.  The good 

agreement is seen for the concentrations corresponding to the inner intervals whereas 

those corresponding to the outer intervals are somewhat scattered particularly for very 

low concentrations.  A high 2R  value of 0.97 is obtained for the overall fit.   
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Figure 4-1. Comparison of  values from the PPG data and the LPM: a) entire arcs 
and b) divided arcs (square: inner, triangle: outer) 

*CIC
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4.3. Case Studies and Numerical Details 

4.3.1. Case descriptions 

 The stable ABL typically occurs during the nighttime when the ground surface is 

cooling down and a stable temperature gradient is induced extending from the ground.  

The stable temperature gradient suppresses turbulence generated by the wind shear, and 

turbulence exists only in the presence of moderate or strong winds.  From the scaling 

schematic of Holtslag and Nieuwstadt (1986), the stable ABL is empirically divided into 

different regions depending on elevation and degree of stability, including surface 

boundary layer, local scaling layer, z-less scaling layer, near-neutral upper layer, and 

intermittency layer.  The intermittent layer usually exists in the uppermost part of the 

ABL and can extend downward throughout the ABL depth when stability is very strong.  

Turbulence in the intermittent layer is known to be sporadic and difficult to characterize.  

This work is limited to weakly and moderately stable conditions where turbulence is 

characterizable and plays an important role. 

 As noted above, six cases are studied and associated with three stable conditions 

with  = 1.3, 2.5, and 4.2 (based on their means, see Table 4-1).  The uncertain inputs 

include Monin-Obukhov length (L), friction velocity ( ), roughness height (z

Lh /

*u o), and 

mixing height (h) and the universal constant (Co).  The parameters L, , and h are three 

key variables in scaling turbulence quantities in the stable ABL.  Three cases correspond 

 to  = 2.5 and three levels of uncertainties (in terms of standard deviation) in 

meteorological parameters that are assumed to be low (10% of their mean values), 

medium (20%), and high (30%).  For conciseness, these three cases will be referred to as 

S[10], S[20], and S[30], respectively.  For  = 1.3 (weakly stable) and 4.2 

*u

Lh /

Lh /
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(moderately stable), due to computational-cost constraint, only the medium level (i.e. 

20%) is considered, and the cases corresponding to these values will be referred to as 

WS[20] and MS[20], respectively.  In each case, the mean of zo is set to 1 cm (0.01 m), 

and a neutrally-buoyant non-reactive pollutant is released from a continuous point source 

located near the ground with a height of 1.0 m.   

In practice, uncertainties in meteorological parameters can come from various 

sources, depending on measurement accuracy, instruments, and methods as well as the 

assumptions and relations of empirical formulas used for their estimation.  Fast-response 

instruments have been available for measuring some basic variables (e.g. velocity and 

temperature), which enables various turbulence quantities to be derived directly.  van 

Ulden and Holtslag (1985) outlined the details of estimating and preprocessing several 

meteorological parameters for the ABL.  For example,  can be estimated by either 

profile or energy budget methods.  The value of z

*u

o can be computed using either a wind 

profile or its approximate relations to the normalized standard wind speed or maximum 

wind gust.  Wilczak and Phillips (1984) conducted field measurements of a number of 

meteorological quantities (e.g. wind speed, velocity variances, temperature, and mixing 

height) under daytime convective conditions, compared them with the estimates from 

surface layer flux-profile relationships and an inversion rise model, and found that most 

of those meteorological quantities have a mean difference of 10-30%.  Lena and Desiato 

(1999) evaluated the performance of ten empirical formulas proposed for estimating 

mixing heights during nighttime with the measurement data from sound detection and 

ranging (SODAR) system and radio acoustic sounding system (RASS), showing that 

large differences in estimates exists among the formulas themselves and measurements.  
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In terms of normalized mean standard error, the differences range from 0.25 to as high as 

8.96.  They found that the formulas given by Benkley and Schulman (1979) and 

Nieuwstadt (1984) give fair results.  The former takes the form , where  is 

the mean wind speed at 10 m above the ground, while the latter takes Zilitinkevich’s 

(1972) expression: , where c

2/3
10uh ∝ 10u

2/1
* )/( fLuch s= s ≈ 0.4 and f is the Coriolis parameter.  L is 

defined by , where T is the mean near-surface absolute temperature, k 

is the von Karman constant (≈ 0.4), g is the gravity constant, and H is the mean surface 

heat flux.  Then, the uncertainty in L can be associated with the uncertainties in the values 

of , H, and T.   Like , H can also be estimated from the profile or energy budget 

methods.  The importance of meteorological fields and their uncertainties for air quality 

models was noted in Lewellen and Sykes (1989).  However, such uncertainties have not 

been extensively reported and sufficiently archived, leading to difficulty in their 

characterization. 

HgkTuL /3
*−=

*u *u

 There has been an inconsistency in the reported values of the universal constant 

Co, ranging widely from 1.6 to 10 (for review, see Rodean (1996), Du et al. (1995) and 

Degrazia and Anfossi (1998)).  So, it is of practical interest to include this constant in the 

analysis.  Here, the values of 3.0 and 0.5 are used as its mean and standard deviation, 

respectively, according to the estimate Co = 3.0 ± 0.5 by Du et al. (1995).  The input 

uncertainties are assumed to be independent and log-normally distributed.  Lognormal 

distributions are commonly applied to parameters whose values are nonnegative (Bergin 

et al., 1999).  They are usually suitable for environmental variables that are widely 

distributed and tend to have a few large values whereas normal distributions are more 

suitable for some particular parameters such as mean wind direction and temperature 
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(Hanna et al., 1998).  Other distribution types (e.g. triangular, log-uniform, and log-

triangular) have also been used (NCRP, 1996).  Some workers (Freeman et al., 1986; 

Yegnan et al., 2002) have treated all input uncertainties as independent normally 

distributed variables.  Thus, it is of interest to include an additional case using the same 

information as S[20] but assuming each input uncertainty to be normally distributed in 

order to see how results change due to different distribution types.  This supplementary 

case will be referred to as S[20N].  Clipped distributions are often preferred in order to 

exclude unrealistic or extreme values of inputs during random sampling (Derwent, 1987; 

Hanna et al., 1998).  Here, 98%-probability clipped lognormal and normal distributions 

(i.e. 1% of probability clipped at each of the upper and lower ends of a distribution) were 

implemented.  It is important to note that the independence among input uncertainties 

may be viewed as only approximate because the correlations are not known or quantified.  

As mentioned earlier, the uncertainty in one input may be directly or indirectly associated 

with those of others and propagated through their physical, chemical, or mathematical 

relations.  Incorporating such associations into analysis is often difficult due to lack of 

complete knowledge of uncertainties but can improve results. 

 Table 4-1 summarizes the means and standard deviations of uncertain inputs in 

each case.  The means of meteorological parameters in S[.] and MS[.] are guided by the 

 values used in the numerical work of Brost and Wyngaard (1978) and that the values of 

  in the last column are based on their means.  A base case is referred to as the 

condition for which the mean of each input is used in calculation.  The base cases of 

WS[.], S[.], MS[.] are denoted by WS

Lh /

Base, SBase, and MSBase, respectively.  The heat fluxes 
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Table 4-1. Inputs and their uncertainties in the six chosen cases 

Input
 

No. Case Distribution c h /L d

 L (m) u * (m s-1) z o (cm) h (m) C o

M a ± SD b M ± SD M ± SD M ± SD M ± SD

1 WS[20] 400 ± 20%e 0.41 ± 20% 1.0 ± 20% 500 ± 20% 3.0 ± 0.5 Lognormal 1.3
2 S[10] 60 ± 10% 0.23 ± 10% 1.0 ± 10% 150 ± 10% 3.0 ± 0.5 Lognormal 2.5
3 S[20] 60 ± 20% 0.23 ± 20% 1.0 ± 20% 150 ± 20% 3.0 ± 0.5 Lognormal 2.5
4 S[30] 60 ± 30% 0.23 ± 30% 1.0 ± 30% 150 ± 30% 3.0 ± 0.5 Lognormal 2.5
5 S[20N] 60 ± 20% 0.23 ± 20% 1.0 ± 20% 150 ± 20% 3.0 ± 0.5 Normal 2.5
6 MS[20] 12 ± 20% 0.15 ± 20% 1.0 ± 20% 50 ± 20% 3.0 ± 0.5 Lognormal 4.2
 

a Mean of distribution
b Standard deviation of distribution
c 98%-clipped distributions 
d Based on their means 
e Percentage of the mean 
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corresponding to these base cases are approximately −0.013, −0.015, and −0.021 K m s−1 

(at a mean surface temperature of 293 K), respectively.  Since the dispersion process in 

question is conservative (i.e. no loss and gain of the pollutant’s mass after release), it is 

proper to use the concentration form , where C and Q are as defined 

previously.  The corresponding dimension of  is Length

QCC /* =

*C −3 Time.  The spatial domain 

of the dispersion considered here is within 3 km downwind from the source, extending 

from that of the PPG experiments (~ 1 km).  For conciseness, R(x, y) is used to denote the 

receptor at coordinates (x, y).  There are six receptors representatively chosen along the 

plume centerline, which are R(100,0), R(200,0), R(500,0), R(1000,0), R(2000,0), and 

R(3000, 0), and eight receptors in the lateral direction (i.e. crosswind) at distance x = 

2000 m, which are R(2000, ±25), R(2000, ±50), R(2000, ±75), and R(2000, ±100).  As 

seen, these receptors are within the range of ±100 m in the lateral direction where the 

maximum and large concentrations take place and are generally of most practical 

concern.  Another reason for limiting consideration only to those receptors is that 

concentrations at locations beyond that range become quite noisy and can considerably 

affect results during linear regression modeling.  Since the dispersion is symmetrical 

around the plume centerline (or y = 0), the concentrations at R(x, y) and R(x,−y) are 

equivalent.  Thus,  will be shortened to R(x, | y| ). ),(R yx ±

 

4.3.2. Numerical details 

4.3.2.1. LPM  

 The explicit Euler differencing scheme was used for numerical integration, by 

which Eq. (4.1) is rewritten into the following discrete form  
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where n is the timestep,  is the size of timestep n,  is normally distributed with 

mean zero and variance . The Marsaglia-Bray algorithm (Press et al., 1992, p. 280) 

was used to generate random numbers for a normal univariate. To initialize the velocity 

of a particle, the Scheuer-Stoller algorithm (Law and Kelton, 2000, p. 480) for a normal 

multivariate with a nonzero covariance matrix was employed.  Perfect reflection of a 

particle when encountering the ABL top (at z = h) and the ground (assumed at z = z

nt∆ n
jW∆

nt∆

o) was 

carried out.  Following Flesch et al. (1995), the fluctuating velocity components in both 

along-wind and vertical directions are reversed to their opposite signs after reflection.  

 To calculate the concentration at a particular receptor, a grid cell (3D) was placed 

aligned with the center of the receptor.  The method of a total residence time was 

employed, by which (i) each particle is generated at the same initial time, (ii) the 

residence time that each particle spends inside the grid cell is recorded and summed up 

with those from the other particles, and (iii) the concentration is linearly proportional to 

the total residence time.  We examined different grid cell sizes and different numbers of 

particles per simulation for the three base cases (i.e. WSBase, SBase, and MSBase).  Square (in 

x-y) grid cells were used for simplicity, and the cell height was set to 2.0 m for each 

receptor.  ∆cell denotes the width of a grid cell.  When ∆cell at a receptor is too large, the 

local resolution of concentration is lost.  On the contrary, if ∆cell is small, the local 

resolution can be maintained but the rate of convergence becomes slow, requiring more 
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particles per simulation (otherwise the result would still be unstable and tend to be noisy).  

Final values of ∆cell were approximately set as follows:  In WS[.] and S[.], ∆cell equals 2.5 

m for 0 < x ≤ 500 m and is linearly adjusted to 22.5 m for 2500 m < x ≤ 3000 m while, in 

MS[.], ∆cell is linearly adjusted to 17.5 m for 2500 m < x ≤ 3000 m instead.  Further 

sensitivity tests were performed for ∆cell in the three base cases by varying its specified 

values by ±10%.  The results before and after doing so were slightly different and not 

very sensitive to such changes.  For cell height, values of 1.0, 2.0, 3.0, and 4.0 m were 

tested.  It was found that strongly negative sensitivity of concentration exists for receptors 

near the source but there is little sensitivity for distant receptors.  Since the value of 2.0 m 

yielded satisfactory results from comparison to the PPG data, it was chosen for use.  

Figure 4-2 shows a graphic representation of concentration contours computed by the 

model for each base case.  It is seen that the contours are spread out in WSBase and SBase 

and become relatively narrow for MSBase.  In the figure, systematic contours of very small 

concentrations are captured but somewhat irregular, suggesting ~ 0.1 × 10*C −5 m−3 s as 

the resolution limit of the model in this application.  The cross marks in Figure 4-2b 

indicate the receptors selected for the analysis.  As many as 6×104 particles per 

simulation were needed for the convergence at the receptors within 1000 m (in the along-

wind direction) from the source whereas more particles were still needed for more distant 

receptors.  For such receptors, 8×104 particles were sufficient, and this particle number 

was adopted.  Figure 4-3 shows an example of the results from convergence tests on 

number of particles per simulation at receptors R(200,0) and R(2000,50) for the three 

base cases. Concentrations are not stable for small particle numbers but slowly change 
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Figure 4-2. Example of concentration contours calculated by the LPM: a) WSBase, b) SBase, 
and c) WSBase
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(i.e. converge) for large particle numbers.   

 It is also necessary to control the timestep size  to be small for each step in 

order to obtain accurate trajectories.  We conducted a test similar to that of Flesch and 

Wilson (1992) for each base case, by which  was set to equal  0.1

nt∆

nt∆ lτ , 0.05 lτ , 0.02 lτ , 

0.01 lτ , and 0.005 lτ , where lτ  is called the local decorrelation time and estimated as 

.  When a particle stays in the neighborhood of or within a grid cell of 

interest,  is additionally constrained to be less than the residence time for the particle.  

The results showed only slight changes for  = 0.02

εστ owl C/2 2=

nt∆

nt∆ lτ  and lower.  Hence,  = 

0.02

nt∆

lτ  was used.  As for computational times required in running the model, they were 

approximately 3, 4, and 6 hr for WSBase, SBase, and MSBase, respectively, on a 500-MHz 

processor.  The average travel time of the cloud of particles migrating from the source to 

the end of the spatial domain in question was found to be less than 0.5 hr for each base 

case which is well within the time frame of short-range dispersion.  

 

4.3.2.2. LHS, MC simulations, and linear regression modeling  

The LHS method, developed by Mckay et al. (1979), is a stratified random 

sampling by which the sample space for an input is divided up into a number of layers 

and input values are obtained by sampling separately from within each layer.  Its 

 procedure is concisely described as follows:  Suppose that a number of observations 

(NLHS) for an output are planned.  A set of NLHS values of each input (i.e. a sample of size 

NLHS of each input) must then be generated.  To do so, first divide each input distribution 
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Figure 4-3. Convergence of  on No. of particles per simulation for WS*C Base, SBase, and 
WSBase at: a) R(200, 0) and b) R(2000, 50) 
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into NLHS equiprobable intervals.  A single input value is selected either at random from 

within or at the midpoint of each interval.  The NLHS values of one input are randomly 

paired without replacement with the NLHS values of another input to form NLHS pairs of 

input values.  These pairs are randomly combined without replacement with the NLHS 

values of the next input to form NLHS triplets of input values.  The process is continued for 

the other inputs.  Finally, NLHS sets of input values are obtained for MC simulations. 

To economize the computational cost of the entire analysis, it is important to 

determine a manageable sample size for MC simulations.  In doing so, S[20] was chosen 

as a reference, and different values of NLHS (here, 50, 75, 100, and 200) were tested.  NLHS 

= 100 was selected because the observed changes in the first three moments of  were 

small.  As an example, the convergence results at R(200, 0) and R(2000, 50) are shown in 

Figure 4-4.  In the figure, M, SD, and SK denote the sample mean, the sample standard 

deviation, the sample skewness parameter, respectively, and  is the cube root of 

SK.  M appears stable for each N

*C

3/1SK

LHS at both receptors while SD still varies much for NLHS 

= 50 and 75 at R(200,0).  For , the relative differences are still considerable for 

N

3/1SK

LHS = 50 but become bounded within ±10% from NLHS = 75.  One caution of using the 

LHS is spurious correlations among inputs that always take place during random pairing.  

In this work, all off-diagonal terms in the Spearman rank correlation matrix of inputs 

after random pairing in each case in the analysis were low (< 0.1).   

Additional useful results can be drawn from partitioning an output uncertainty to 

specify inputs of greatest importance.  A widely used technique is linear regression 

modeling in which results from MC simulations are used in constructing an empirical 
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Figure 4-4. Convergence of the first three moments of  on N*C LHS for S[20] at: a) R(200, 
0) and b) R(2000, 50) 
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relationship between output and inputs (NCRP, 1996 and references therein; Yang and 

Milford, 1996; Bergin et al., 1999; Helton and Davis. 2002).  The regression technique is 

simple in both concept and implementation and enables the global sensitivity of an output 

with respect to an input to be readily estimated.  In this work, the linear regression 

equation is given by      

 

,)(0
* ∑+=

q
qq XXC ββ                   (4.7) 

 

where  is input q (= 1, 2, … , N = 5), qX 0β  is the regression intercept, )( qXβ  is the 

regression coefficient for input q,  and  is the output (concentration).  Regression 

coefficients are determined by the method of least squares (Neter et al., 1996, p. 217-

228).  The significance of 

*C

)( qXβ  can be viewed as an aggregate first-order measure of 

the change of  due to a unit change in , and it represents the global sensitivity of 

 to  or the influence of  on .  To reduce the effect of different scales of 

inputs, a standardized version of Eq. (4.7) was used, where and  were normalized 

to zero mean by their respective sample means and to unit variance by their respective 

sample standard deviations.  As a result, 

*C qX

*C qX qX *C

qX *C

0β  becomes zero, and )( qXβ  is dimensionless.  

The uncertainty contribution from  to the uncertainty (in terms of variance) in , 

denoted by , is  

qX *C

)( qXUC

 

.100)((%))( 2 ×= qq XXUC β                              (4.8) 
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The global sensitivity of  with respect to , denoted by , is computed as   *C qX )( qXGS

 

,
)(
)()()(

*

q
qq XSD

CSDXXGS β=                    (4.9) 

 
 
where  is the sample standard deviation of , and  is the sample 

standard deviation of .  Eq. (4.9) results from taking the first-order derivative of  

with respect to .   Note that 

)( qXSD qX )( *CSD

*C *C

qX )( qXβ  in Eqs. (4.8) and (4.9) is from the standardized 

regression.   

To verify the adequacy of a regression model, the residual plot of each input and 

the normal plot of output residuals were checked.  The proper character of a residual plot 

should exhibit a scattered (i.e. not grouped) pattern around zero, and that of the normal 

plot should not display a large departure from a straight line.  The value of 2R  of a 

regression model was also compared with the sum of all uncertainty contributions, i.e. 

∑q )( qXUC , to inspect the degree of spurious correlations arising during the LHS.  Since 

input uncertainties are assumed to be independent, both quantities are equal (Helton and 

Davis, 2002).  However, they normally differ in practice because of the presence of such 

spurious correlations.  In this work, the magnitude of their difference was checked and 

found to be less than 10%, i.e. | ∑q
2)( RXUC q − | / 2R  < 0.1, for all regression models in 

the analysis.   
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4.4. Results and Discussion 

4.4.1. Comparison of concentration uncertainties 

 Concentration results and their first three moments obtained from MC simulations 

with the LHS for the six cases chosen in the study are presented in Table 4-2.  In the 

table, γ is the ratio of the concentration from a particular base case ( ) to the 

concentration mean (M) from MC simulations, CV (= ) is the coefficient of 

variation (defined as the ratio of the sample standard deviation, SD, to the sample mean, 

M) of concentration,  is the cube root of the sample skewness parameter of 

concentration.  (Results for R(2000, 100) in MS[20] are not given because most 

concentrations from MC simulations at this receptor fell below the resolution limit of the 

model and are not appropriate for use.)  It is seen that M decreases away from the source 

and from the plume centerline.  The values of γ are not far from unity (0.95-1.20), and the 

level of input uncertainties plays an important role in the value of γ.   That is, γ increases 

from S[10] to S[30], except for R(2000, 75) and R(2000, 100) where γ  is only slightly 

changed.  A large departure from unity may not be explicitly explained but indicates the 

presence of a nonlinear relation between inputs and output.  When the relation between 

inputs and an output is linear, γ will be close to unity regardless of input uncertainties.  It 

is evident from S[10] to S[30] that the larger the input uncertainties, the larger the CV 

values.  The CV trends do not vary much along the plume centerline.  However, in the 

lateral direction, CV decreases and then increases, especially in MS[20] where the largest 

CV (= 0.67) occurs.  All concentrations are shown to be positively skewed, even in 

 

*
BaseC

MSD /
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Table 4-2. Concentration results from MC simulations for each case 

Distance (m) along plume centerline Lateral distance (m) from plume 
Case centerline at x  = 2000 m

100 200 500 1000 2000 3000 0 25 50 75 100

WS[20] M a 165.62 52.07 10.68 3.27 1.04 0.55 1.04 0.93 0.76 0.49 0.29
γ b 1.05 1.08 1.07 1.11 1.15 1.09 1.15 1.12 0.98 1.11 1.03

CV c 0.27 0.29 0.32 0.31 0.34 0.35 0.34 0.32 0.31 0.28 0.35
SK 1/3 d 0.96 1.19 0.95 1.02 1.06 1.36 1.06 1.11 0.96 0.95 0.69

S[10] M 328.27 111.17 27.30 10.14 4.02 2.46 4.02 3.51 2.24 1.11 0.43
γ 1.01 1.03 1.01 1.05 1.02 1.05 1.02 0.99 1.02 0.95 1.03

CV 0.19 0.22 0.23 0.23 0.22 0.22 0.22 0.20 0.15 0.14 0.27
SK 1/3 0.78 0.79 0.80 0.80 0.80 0.80 0.80 0.64 0.64 0.69 0.56

S[20] M 336.82 114.71 28.23 10.52 4.22 2.55 4.22 3.67 2.33 1.13 0.45
 γ 1.03 1.06 1.04 1.09 1.07 1.09 1.07 1.04 1.06 0.96 1.07

CV 0.25 0.28 0.28 0.29 0.30 0.30 0.30 0.27 0.23 0.23 0.35
SK 1/3 0.85 0.91 0.93 0.97 0.99 0.94 0.99 0.88 0.95 0.92 0.75

S[30] M 357.44 121.85 30.45 11.23 4.59 2.80 4.59 3.89 2.44 1.15 0.45
γ 1.10 1.13 1.12 1.16 1.17 1.20 1.17 1.10 1.11 0.98 1.07

CV 0.34 0.36 0.38 0.38 0.38 0.39 0.38 0.38 0.31 0.33 0.44
SK 1/3 0.84 0.87 0.90 0.90 0.90 0.97 0.90 0.90 0.90 0.99 1.01

S[20N] M 336.15 114.05 28.07 10.49 4.18 2.53 4.18 3.57 2.36 1.13 0.43
γ 1.03 1.05 1.04 1.08 1.06 1.08 1.06 1.01 1.08 0.97 1.03

CV 0.29 0.32 0.29 0.33 0.33 0.34 0.33 0.31 0.27 0.31 0.46
SK 1/3 1.14 1.14 1.04 1.14 1.10 1.15 1.10 1.08 1.05 0.99 0.84

MS[20] M 755.21 310.05 98.38 43.85 20.47 13.69 20.47 12.75 3.41 0.40 -
γ 1.07 1.03 1.05 1.06 1.06 1.09 1.06 1.05 1.02 0.98 -

CV 0.26 0.28 0.29 0.29 0.28 0.28 0.28 0.24 0.30 0.67 -
SK 1/3 0.95 0.90 0.97 0.94 0.86 0.92 0.86 0.98 0.89 0.97 -

a Sample mean of concentration ( 10−5 m−3 s)
b γ =  Μ / C*

Base , where C *
Base is the concentration from its correponding base case

c Coefficient of variation ( = SD /M) where SD is the sample standard deviation of concentration 
d Cube  root of the sample skewness parameter
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S[20N] where all input uncertainties are normally distributed.  Furthermore, the results in 

S[20] and S[20N] are comparable but those in former have smaller skewness.  That is, the 

concentration distributions in S[20N] have heavier tails than those in S[20].  Relatively 

small skewness is found in S[10].  The degree of stability also has a strong influence on 

skewness, as seen in WS[20] where skewness appears to be larger for the receptors along 

and close to the plume centerline than in S[20] and MS[20].  Figure 4-5 shows an 

example of the cumulative probability plots of concentrations at R(200, 0) and R(2000, 

50) in WS[20], S[20], and MS[20].  

 

4.4.2. Uncertainty contributions and inputs of importance 

 Uncertainty contributions from the inputs and the global sensitivities of 

concentrations were obtained from incorporating results from MC simulations into linear 

regression modeling.  Results for the receptors along the plume centerline and those for 

the receptors in the lateral direction are shown in Tables 4-3 and 4-4, respectively.  All 

final regression models (of ) did not use  as an input but  instead.  The reason is 

that regression models with , when used, were found to have serious inadequacies as 

follows:  The residual plots of  deviated considerably from the desired character for 

most receptors, exhibiting a common pattern of positive and negative (concave-like) 

residuals of  grouped together.  Moreover, their normal plots were not close to a 

straight line.  Thus, the original regression model in Sec. 3.2 required modification.  In 

doing so, some alternative polynomial forms of  (here,  for m = ±1, ±2, …) were  

examined.  It was found that  was a simple and practical choice, giving satisfactory 
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Figure 4-5. Cumulative probability plots from MC simulations: a) WS[20] at R(200, 0),  
b) WS[20] at R(2000, 50),  c) S[20] and S[20N] at R(200, 0),  d) S[20] and S[20N] at 
R(2000, 50),  e) MS[20] at R(200, 0), and f) MS[20] at R(2000, 50) 
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Table 4-3.Uncertainty contributions and global sensitivities of concentrations at the 
receptors along the mean plume centerline 

Distance (m) along plume centerline

Case Input  100  200  500  1000  2000 3000

GS a UC b GS UC GS UC GS UC GS UC GS UC

 (R 2 = 0.95) (R 2 = 0.91) (R 2 = 0.91) (R 2 = 0.84) (R 2 = 0.81) (R 2 = 0.74)
WS[20] L 0.0 0.0 0.0 0.5 0.0 0.3 0.0 1.6 0.0 1.5 0.0 3.0

u * -404.7 55.6 -127.1 45.6 -28.0 44.6 -7.5 36.1 -2.7 37.9 -1.3 31.9
z o -22.1 0.9 -11.8 2.2 -1.3 0.5 -0.7 1.7 -0.2 0.7 -0.1 1.0
h 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.3 0.0 0.4 0.0 0.7

C o 56.5 37.7 20.7 41.8 4.8 45.2 1.4 44.3 0.5 40.6 0.2 37.1

(R 2 = 0.98) (R 2 = 0.98) (R 2 = 0.95) (R 2 = 0.94) (R 2 = 0.93) (R 2 = 0.92)
S[10] L -0.5 0.2 -0.4 0.8 -0.2 2.4 -0.1 2.3 0.0 3.6 0.0 5.2

u * -1404.0 24.1 -467.1 17.9 -109.3 15.4 -46.1 19.8 -17.4 18.6 -10.1 16.7
z o -44.4 0.4 -21.4 0.7 -4.9 0.6 -1.2 0.2 -0.1 0.0 -0.2 0.2
h 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.7 0.0 0.5

C o 112.2 71.1 44.8 75.9 11.2 74.1 4.0 68.8 1.5 66.0 0.9 65.4

(R 2 = 0.97) (R 2 = 0.97) (R 2 = 0.96) (R 2 = 0.95) (R 2 = 0.93) (R 2 = 0.94)
S[20] L -0.6 0.7 -0.3 1.6 -0.2 4.8 -0.1 7.9 0.0 9.8 0.0 12.6

u * -1380.8 54.8 -476.3 47.7 -115.1 43.8 -44.8 44.6 -18.4 45.0 -11.4 45.6
z o -44.1 1.0 -18.7 1.3 -3.1 0.5 -0.4 0.1 -0.2 0.1 -0.2 0.2
h -0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.4 0.0 1.7 0.0 2.1

C o 118.7 44.7 46.9 51.1 11.9 51.5 4.4 46.4 1.7 40.2 1.0 37.1

(R 2 = 0.97) (R 2 = 0.96) (R 2 = 0.95) (R 2 = 0.94) (R 2 = 0.94) (R 2 = 0.92)
S[30] L -0.6 0.8 -0.3 1.7 -0.1 4.2 -0.1 9.7 0.0 12.9 0.0 14.9

u * -1399.9 66.9 -480.9 61.2 -120.4 54.1 -43.3 53.1 -18.0 53.4 -11.1 50.7
z o -53.9 1.6 -16.3 1.1 -2.8 0.5 -0.8 0.3 -0.2 0.1 0.0 0.0
h 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.4 0.0 0.9 0.0 1.7

C o 130.7 26.6 50.7 31.1 14.3 34.6 4.8 30.2 1.9 26.1 1.1 23.6

(R 2 = 0.94) (R 2 = 0.93) (R 2 = 0.92) (R 2 = 0.89) (R 2 = 0.89) (R 2 = 0.86)
S[20N] L -0.7 0.7 -0.4 2.0 -0.1 3.2 -0.1 7.2 0.0 8.4 0.0 9.8

u * -1454.1 59.4 -480.5 46.9 -108.3 44.9 -43.5 41.8 -18.0 45.1 -11.5 47.4
z o -43.6 0.8 -10.4 0.3 -0.4 0.0 -0.2 0.0 0.1 0.0 0.2 0.1
h -0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.7 0.0 2.1 0.0 1.9

C o 112.3 31.4 48.1 41.7 11.1 42.0 4.4 37.4 1.6 30.6 0.9 24.7

(R 2 = 0.96) (R 2 = 0.96) (R 2 = 0.94) (R 2 = 0.94) (R 2 = 0.94) (R 2 = 0.94)
MS[20] L -18.7 4.9 -10.8 8.3 -4.4 12.8 -2.0 13.1 -0.9 13.7 -0.7 15.4

u * -4839.4 55.0 -1958.5 45.3 -618.4 41.7 -289.0 45.2 -133.1 46.8 -89.3 47.5
z o -65.2 0.4 -33.9 0.6 -8.8 0.3 -2.1 0.1 0.3 0.0 -0.1 0.0
h -0.5 0.1 -0.3 0.1 -0.2 0.3 -0.2 1.9 -0.1 3.0 -0.1 3.6

C o 228.5 31.8 112.5 38.8 35.9 36.5 15.0 31.4 6.4 28.1 4.0 25.2

a Global sensitivity with units of (10−5 m−4 s) for L , (10−5 m−4 s2) for u *, (10−3 m−4 s) for z o , (10−5 m−4 s) for h , and (10−5 m−3 s) for C o
b Uncertainty contribution (%) calculated from linear regression in which  u *

-1 is used as an input
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Table 4-4. Uncertainty contributions and global sensitivities of concentrations at the 
receptors in the lateral direction at a distance of 2000 m 

Lateral distance (m) from plume centerline at  x  =  2000 m

Case Input 0  25  50  75  100

GS a UC b GS UC GS UC GS UC GS UC

 (R 2 = 0.81) (R 2 = 0.77) (R 2 = 0.76) (R 2 = 0.52) (R 2 = 0.47)
WS[20] L 0.0 1.5 0.0 3.0 0.0 0.3 0.0 1.2 0.0 2.6

u * -2.7 37.9 -2.1 32.0 -2.1 51.1 -1.1 42.6 -0.8 43.5
z o -0.2 0.7 0.0 0.0 -0.1 0.7 0.0 0.1 0.1 1.7
h 0.0 0.4 0.0 0.5 0.0 0.2 0.0 2.4 0.0 0.0

C o 0.5 40.6 0.4 41.3 0.2 24.0 0.1 6.2 0.0 0.4

(R 2 = 0.93) (R 2 = 0.91) (R 2 = 0.77) (R 2 = 0.52) (R 2 = 0.57)
S[10] L 0.0 3.6 0.0 4.6 0.0 0.3 0.0 0.1 0.0 1.8

u * -17.4 18.6 -14.7 21.7 -9.8 40.5 -4.7 46.3 -1.8 12.4
z o -0.1 0.0 -0.2 0.1 0.5 1.7 0.3 2.9 0.1 0.6
h 0.0 0.7 0.0 0.2 0.0 1.0 0.0 1.0 0.0 2.6

C o 1.5 66.0 1.1 59.9 0.4 30.8 -0.1 3.2 -0.2 40.4

(R 2 = 0.93) (R 2 = 0.94) (R 2 = 0.89) (R 2 = 0.75) (R 2 = 0.73)
S[20] L 0.0 9.8 0.0 10.5 0.0 4.4 0.0 0.1 0.0 10.6

u * -18.4 45.0 -15.7 52.3 -9.4 63.3 -4.9 70.9 -1.9 30.9
z o -0.2 0.1 -0.4 0.6 0.2 0.5 0.2 2.0 0.1 0.7
h 0.0 1.7 0.0 0.6 0.0 1.0 0.0 0.1 0.0 0.3

C o 1.7 40.2 1.2 34.5 0.5 20.3 0.0 0.1 -0.2 32.6

(R 2 = 0.94) (R 2 = 0.94) (R 2 = 0.93) (R 2 = 0.93) (R 2 = 0.75)
S[30] L 0.0 12.9 0.0 8.8 0.0 2.4 0.0 0.4 0.0 14.4

u * -18.0 53.4 -16.3 62.4 -9.4 78.6 -5.0 88.0 -1.8 43.0
z o -0.2 0.1 -0.2 0.1 0.2 0.6 0.2 1.5 0.1 2.2
h 0.0 0.9 0.0 0.5 0.0 1.0 0.0 0.3 0.0 0.1

C o 1.9 26.1 1.4 21.4 0.5 8.8 -0.1 0.9 -0.2 18.8

(R 2 = 0.89) (R 2 = 0.85) (R 2 = 0.77) (R 2 = 0.64) (R 2 = 0.59)
S[20N] L 0.0 8.4 0.0 5.9 0.0 2.3 0.0 0.2 0.0 9.2

u * -18.0 45.1 -15.0 48.2 -9.7 58.7 -5.5 62.7 -2.2 31.3
z o 0.1 0.0 0.1 0.0 0.2 0.3 -0.1 0.1 -0.1 0.3
h 0.0 2.1 0.0 1.0 0.0 0.3 0.0 0.0 0.0 4.1

C o 1.6 30.6 1.2 28.3 0.5 13.5 0.1 0.6 -0.2 18.4

(R 2 = 0.94) (R 2 = 0.89) (R 2 = 0.72) (R 2 = 0.69)
MS[20] L -0.9 13.7 -0.3 6.2 0.2 12.0 0.1 34.2 -

u * -133.1 46.8 -80.2 62.3 -24.4 50.0 -2.3 6.6 -
z o 0.3 0.0 -0.2 0.0 0.7 1.7 0.1 0.2 -
h -0.1 3.0 -0.1 3.0 0.0 0.0 0.0 0.5 -

C o 6.4 28.1 2.5 15.4 -0.8 13.0 -0.3 31.1 -

a, b  Same as in Table 4-3
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behavior for the residual plots of the inputs and the normal plots at all  

receptors in every case with few minor deviations.  An example of improvement in the 

residual plots using *u  and then using 1
*
−u  is shown in Figure 4-6.  Due to the 

modification, the global sensitivity of *C  to  is computed as 
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−−= β                       (4.10) 

 

here  is the regression coefficient for  (from the standardized regression), 

is th
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ost in
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Base*)(uM e base value (or mean) of *u , and the rest are the same as in Eq. (4.9).   

om Table 4-3, it is clear that fri ion velocity and the universal constant are t

 

m fluential inputs.   When the uncertainties in meteorological parameters are at the 

medium (20%) and high (30%) levels, the uncertainty contribution from friction velocity 

dominates those of the other inputs.  At the low (10%) level, the contribution from the 

universal constant dominates.  In general, the contributions from Monin-Obukhov length 

and mixing height are not large.  However, they begin to increase for distant receptors, 

particularly in MS[20], which is reasonable because, in MS[20], Monin-Obukhov length 

and mixing height are relatively small and can significantly affect the values of 

turbulence statistics in the model.  Also, when mixing height is small, more particles are 

likely to reach the ABL top at longer distances and then reflect back to low elevations.  

The overall contribution from roughness height is found to be only slight (< 3%). 

Comparing S[20] and S[20N], their results differ slightly but are comparable.  The 2R  
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Figure 4-6. Residual plots of  and  from standardized regression for S[20] at R(200, 
0): a)  using  and b) using   
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values in the table are fairly high (0.74-0.98), indicating that the regression models are 

apable of accounting for most of total uncertainty.  For the global sensitivities, their 

e universal constant.  Similar to the previous table, the uncertainty 

contrib

c

trends are generally similar to those of uncertainty contributions since both quantities are 

derived from the same information (which are the regression coefficients).  Most inputs 

are associated with negative sensitivity (i.e. an output tends to decrease with an increase 

in an input) while the universal constant is associated with positive sensitivity.  The GS 

values appear not to be significantly affected by the level of input uncertainties, as seen in 

S[10]-S[30].    

In Table 4-4, the largest uncertainty contributors for most receptors are friction 

velocity and th

ution from the universal constant dominates when the levels of uncertainties in 

meteorological inputs are small.  Nevertheless, it tends to decline for the receptors near 

the plume centerline and then increase afterwards, corresponding to the change in the GS 

sign from positive to negative with the minimum of UC values present at some distance 

in between.  Therefore, the uncertainty in the universal constant has little or no influence 

for locations in the neighborhood of the UC minimum.  Similarly, the contribution from 

Monin-Obukhov length decreases for the receptors near the plume centerline and 

increases later, and it becomes fairly large in MS[20].  In addition, the GS values in 

S[10]-S[30] are not very sensitive to the level of input uncertainties.  The contributions 

from roughness height and mixing height are not important.  In S[20] and S[20N],  the 

results are comparable and share similar trends.  The 2R  values are high for most 

receptors but relatively low (0.47-0.59) for some receptors far from the plume centerline.  

The adequacy of the regression models with low 2R  was checked and found to be 
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satisfactory, suggesting that large variations in the values of both inputs and outputs exist 

in the regression models.    

 As noted in Sec. 1, additional analysis is performed for the half width of 

concentration contours.  The half-width results at a distance of 2000 m for WS[20], 

,                 (4.11) 

S[20], and MS[20] are presented below.  To determine the half width (denoted by HW), 

the profile of the concentration contours in the lateral direction in question is 

approximated by the Gaussian form 

 

     )(exp 2
21

* yC κκ −=  

 

where 1κ  and 2κ  are the regression en  o gthcoefficients with dim sions f Len

engt , respectively, and determined by the method of least squares for a nonlinear 

−3 Time and 

L h−2

regression model (Neter et al., 1996, p. 536-547).  Here, HW is estimated as 2/2 κ  

(equivalent to the lateral distance from the plume centerline covering twice the standard 

deviation of a fitted Gaussian concentration profile).  As an example, the calculated and 

fitted concentration profiles for the three bases cases, together with their corresponding 

values of 1κ , 2κ , and HW, are given in Figure 4-7.  It is seen that the calculated profiles 

 in the figure are well fit by the above Gaussian form.  To partition the uncertainty in the 

half width and to compute the global sensitivity of the half width to an input, the same 

procedures were followed with *C  in Eqs. (4.7) and (4.9) replaced by HW.  Table 4-5 

presents the results from the half-width analysis.  Note that all linear regression models 

use *u  as an input.  Their adequacy was checked and found to be satisfactory.  The 
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Figure 4-7. Comparison between calculated and fitted Gaussian concentration profiles at 
a distance of 2000 m from the source: a) WSBase, b) SBa , and c) WSBase
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able 4-5. Uncertainty contributions and global sensitivities of the half widths of 
concentration contours at a distance of 2000 m 

 

 

 

 

 

 

 

WS[20] S[20] MS[20] 

 

 

 
 
 
 
T

 

M a 129.4 m M 94.5 m M 53.3 m
γ b 1.01 γ 1.05 γ 0.99

CV c 0.13 CV 0.09 CV 0.11

Input GS d UC e Input GS UC Input GS UC

 (R 2 = 0.56) (R 2 = 0.82) (R 2 = 0.75)
C o -24.7 53.5 C o -14.9 65.7 C o -7.7 38.9

L 0.3 18.2 L 1.5 34.2
z o 9.0 3.9 h 0.1 2.4

a, b, c  Same as in Table 2 but for the half width of ground-level concentration contour
d Global sensitivity with units of (m) for  C o  , (-) for L , (m cm−1) or (102 ) for z o , and (-) for h 
e Uncertainty contribution (%) calculated from linear regression in which  u * was used as an input 
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2R  regression model in S[20] is capable of accounting for most of the total uncertainty (

= 0.82).  When the degree of stability increases, M decreases.  In each case, γ is close to 

.5. Summary

unity, and CV is around 10%.  For the uncertainty contributions, only inputs with an 

uncertainty contribution of more than 1% are given in the table.  The most influential 

input in every case is the universal constant and has a negative sensitivity.  Among the 

meteorological inputs, Monin-Obukhov length is now most important and has a positive 

sensitivity, as seen in S[20] and MS[20].  Contributions from the other inputs are 

relatively small.   

 

 

4  

This work has evaluated the effects of uncertainties in five inputs of a Lagrangian 

for short-range dispersion over smooth flat terrain under weakly and 

odera

 

particle model 

m tely stable conditions.  The magnitude of a concentration uncertainty increases 

with those of input uncertainties.  Concentration uncertainties were found to show 

positive skewness.  Results obtained from using lognormal and normal distributions for 

input uncertainties are comparable.  Among the meteorological parameters considered 

here, friction velocity is most influential to the uncertainty in concentration.  

Uncertainties in Monin-Obukhov length and mixing height do not play an important role 

for most receptors when the degree of stability is low.  The influence of Monin-Obukhov 

length in the lateral direction tends to decrease for locations near the plume centerline and 

then increase later.  The overall contribution from roughness height is small.  Besides 

friction velocity, another input of importance is the universal constant.  Its contribution 
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often dominates when the uncertainties in meteorological inputs are low.  Nevertheless, 

for some distances in the lateral direction, it becomes relatively small.  The significant 

contributions from friction velocity and the universal constant suggest the importance of 

using accurate values in the modeling.  For global sensitivities, they share similar trends 

with uncertainty contributions and are not much affected by the level of input 

uncertainties.  Although the sensitivity of concentration to each input may be either 

positive or negative (depending on receptor and case considered), friction velocity is 

associated with strongly negative sensitivity.  The universal constant is associated with 

positive sensitivity for most receptors but with negative sensitivity for faraway receptors 

in the lateral direction.  For the half width of concentration contours, only the universal 

constant and Monin-Obukhov length contribute significantly to uncertainty and have a 

negative and positive sensitivity, respectively.   
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Appendix. Turbulence statistics for the model 

 In this work, we adopted the formulas that could be applied for weakly and 

moderately stable conditions, and their expressions are summarized below:     

 

� Mean wind velocity (van Ulden and Holtslag, 1985):   

 

   ,)/()/(ln*
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where k is the von Karman constant (≈ 0.4) and  is the stability function 

modified from the original linear Businger stability function.  The linear Businger 

stability function takes the form 

)/( LzΨ M

LzΨ M /)5or(7.4 −−=  for L > 0 while the stability 

function for Eq. (4A.1) takes the form  

 

    .29.0exp117 ⎥
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⎞

⎜
⎝
⎛−−−=

L
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Since zo in this work is small (i.e. ), the last term in the brackets in 

Eq. (4A.1) may be neglected.  This modified stability function has the same performance 

as the linear Businger stability function for  < 1 but has a much better performance 

for  > 1 (van Ulden and Holtslag, 1985). 

34 10to10~/ −−Lzo

Lz /

Lz /
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� Variances and covariance:  A number of studies express the second-order moments of 

velocity as follows: 
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A large variation in the reported values of α, cu, cv, and cw is found in the literature.  For 

instance, Hanna (1982) uses: α = 2, cu = 4.0, and cv = cw = 1.7; Arya (1984): α = 2, cu = 

5.8 ≥ cv ≥ cw = 2.6; Nieuwstadt (1984): α = 1.5, cw = 1.96; Sorbjan (1986), α = 2, cw = 2.5; 

and Lenschow et al. (1988): α = 1.75, cu = cv = 4.5, and cw = 3.1.    

 From the Monin-Obukhov theory, the turbulence statistics in Eq. (4A.3) are 

approximately constant for low elevations.  A literature survey by Panofsky and Dutton 

(1984, p. 160) suggests cu = 4.8-6.3, cv = 3.0-4.8, and cw = 1.2-2.0.  A review by Dias et 

al. (1995) gives cw = 1.3-2.3.   It is seen that the above values of α, cu, cv, and cw are 1.5-2, 

4.0-6.3, 1.7-5.8, and 1.2-3.1, respectively.  For the modeling in this work, we chose α = 

2, cu = 4.0, cv = 3.0, and cw = 1.5. 

 

� Mean energy dissipation rate:  Following Sorbjan (1986) with α in Eq. (4A.3) equal 

to 2,   
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Note that, when comparing between the model predictions and the PPG data, the 

dispersion was assumed to take place in the surface boundary layer, and the reduced 

forms of the formulas in Eqs. (4A.3) and (4A.4) by taking the limit  were used. 0/ →hz
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CHAPTER 5 

 

FORMULATION OF JOINT PROBABILITY DENSITY FUNCTIONS OF VELOCITY 

FOR TURBULENT FLOWS: AN ALTERNATIVE APPROACH 

(K. Manomaiphiboon and A. G. Russell, Atmos. Environ. 37 (2003), 4917-4925) 

 

Abstract 

This work presents an alternative technique in formulating an analytical form of 

the joint probability density function (pdf) of velocity for turbulent flows.  The technique 

was rigorously developed by Koehler and Symanowski (1995) [J. Multivariate Anal. 55, 

261-282], by which a joint pdf is constructed based on the prescribed or given knowledge 

of marginal distributions and strictly conserves the original shape of each marginal 

density.  The technique also provides flexibility in estimating parameters required in the 

pdf to fit a specified correlation.  The scope of work is limited to the formulation for two 

velocity components due to less difficulty in examining their correlation structure.  

Illustrated and discussed are a number of pdfs, with emphasis on atmospheric turbulence 

where the vertical velocity is assumed to be positively skew and negatively correlated 

with the horizontal velocity.  

 

 

5.1. Introduction 

Probability density functions (pdfs) of velocity are fundamental in studying and 

modeling statistical characteristics of a turbulent flow.  They form an essential basis 
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required for some classes of turbulence modeling, such as Lagrangian stochastic 

modeling of turbulent diffusion (Thomson, 1987; Wilson and Sawford, 1996).  Two 

general ways to obtain such pdfs are of direct measurement and analytical (or empirical) 

approximation.  Although the former is straightforward and desirable, the latter is of 

importance in that, from a practical viewpoint, it offers an alternative when the 

information obtained from direct measurement is not comprehensive or sufficient and, 

from a modeling viewpoint, it enables mathematics to be handled directly. 

For turbulence in the atmospheric boundary layer (ABL), a Gaussian pdf is 

typically assumed as an approximation when the degree of thermal convection from the 

ground is slight or insignificant.  It has however been acknowledged that the Gaussian 

character is not precise even in neutral conditions, as emphasized in Anfossi et al. (1997).  

Deviation from the Gaussianity is quite more evident for convective conditions where the 

transport asymmetry due to different contributions from the updraft and downdraft causes 

the pdf of vertical velocity to be positively skew (Luhar et al., 1996, and references 

therein).  There has been an intensive advance in formulating non-Gaussian pdfs of one 

velocity component.  Several pdf forms have been proposed in the literature, including 

bi-Gaussian (Baerentsen and Berkowicz, 1984; Weil, 1990; Luhar et al., 1996), Chi-type 

with a skewness parameter (Thomson, 1987), Gram-Charlier series expansion (Anfossi et 

al., 1997; Maurizi and Tampieri, 1999), and maximum missing information (mmi) (Du et 

al., 1994).  An mmi pdf is generally considered preferable because its entropy (i.e. a 

measure associated with incomplete or missing information) is maximized, giving the 

least biased result.   For pdfs of more than one velocity component in non-Gaussian 

turbulence, relatively few studies have been conducted, and most of them are based on an 

 108



assumed pdf form and a number of known velocity moments with some additional 

closures to a set of nonlinear equations associated with the velocity moments.  Flesch and 

Wilson (1992) constructed a joint pdf of two velocity components in studying turbulent 

diffusion within plant canopies by assuming it as a linear combination of Gaussian pdfs.  

Monti and Leuzzi (1996) applied a similar technique for three velocity components.  

Rotach et al. (1996) formulated a joint pdf based on a mixture of two limiting pdfs 

(Gaussian and bi-Gaussian).  The mmi principle can also be extended to the case of more 

than one velocity, and its applicability may depend on the extent of given information 

(e.g. how many velocity moments to be used for an mmi pdf) and the complexity of 

nonlinear equations involved in the formulation.   

For this work, the focus is a case when the marginal density function (shortly, 

marginal density) of each velocity component is given and well characterized and a joint 

pdf (shortly, pdf) is formulated based on this information.  The work is primarily 

motivated by the fact that the pdf formulation for one velocity component has, to date, 

been advanced and relatively comprehensive.  Adopted here is a technique proposed by 

Koehler and Symanowski (1995) (to be referred hereafter to as KS).  The essence of this 

technique is that a pdf is deduced from its probability distribution function (i.e. 

cumulative distribution function or cdf) that assumes a specific functional form and also 

strictly conserves the original shape of each marginal distribution or density.  The 

technique can also be applied to any specific set of marginal densities and provides 

flexibility of fitting a desired correlation between a pair of random variables, especially in 

a bivariate system.  Although the technique was developed for a multidimensional 

framework, the scope of work here is limited to a bivariate case due to less difficulty in 
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examining the effect of association parameters (next section) on correlation.  A concise 

description of the KS formulation is provided below.  Details can be found in the original 

work.  For illustration, an idealized framework is assumed for the ABL, where the 

distributions of the horizontal and vertical velocities are assumed to be Gaussian and 

positively-skew bi-Gaussian, respectively, with the presence of negative correlation 

between them.  A number of pdfs are given and discussed.   

 

 

5.2. KS Formulation 

 Here, let X1, X2, … , Xp denote real-valued univariates (i.e. non-joint scalar-valued 

random variables) for p ≥ 1 and ρXY denote the usual product moment (or Pearson’s) 

correlation coefficient (shortly, correlation) of random variables X and Y.  Let F ≡ F(x1, 

x2, … , xp) be the joint cdf of X1, X2, … , Xp and )( 111
xFF XX ≡ , , … , 

 be their respective marginal distributions.  Similarly, f ≡ f(x

)( 222
xFF XX ≡

)( pXX xFF
pp

≡ 1, x2, … , xp) is 

the joint pdf of X1, X2, … , Xp , and )( 111
xff XX ≡ , )( 222

xff XX ≡ , … ,  

are their respective marginal densities.  According to KS, F takes the form 

)( pXX xff
pp

≡

 

,
1

GFF
p

i
X i
×=∏

=

                                           (5.1) 

 

where G ≡ G(x1, x2, … , xp) is a dimensionless function that reflects the level of 

association (in a sense, correlation or dependence) of random variables.  Its expression is 
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specifically given by where α,∏∏
<

−=
p

i

p

j
ij

ijCG α
ij = αji ≥ 0 is the association parameter 

(shortly, parameter) for all i, j = 1, 2, …, p and 
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with 021 >+++=+ ipiii αααα K  and 021 >+++=+ jpjjj αααα K  for all i, j = 1, 2, 

…, p.  The form of F in Eq. (5.1) is similar to the famous Farlie-Gumbel-Morgenstern cdf 

(Johnson, 1987, Section 10.1) though G is defined differently.  Moreover, it may be 

viewed as a generalization of the generalized Burr-Pareto-logistic distributions (Caputo, 

1998).  It is clear from Eq. (5.2) that Cij is bounded between zero and unity for all i, j 

because the value of  ranges only from zero to unity.  It is here assumed that F 

and f are smooth over the entire domain of these univariates.  A familiar relation between 

F and f can be given by .  Following Eqs. (5.1) and (5.2), f can be 

written by 
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With G defined above, and  are conserved for all i.  As stated by KS, the above 

formulation always yields positive association between any pair of X

iXF
iXf

i and Xj for i ≠ j, 

which is a corollary deduced from the treatise of Marshall and Olkin (1988).  When X1, 

X2, … , Xp are positively associated, nonnegative correlation between any pair of Xi and Xj 

for i ≠ j is implied (i.e. 
ji XXρ ≥ 0).  For details of the association of a pair of random 

variables and its properties, see Barlow and Proschan (1975, p. 29-31).  Nevertheless, it is 

noted that negative correlation for a pair of random variables in the KS formulation can 

also be achieved using the concept of symmetry when one of their marginal densities is 

symmetrical around zero (see Section 5.3.1) or using the concept of a survival function 

(see Section 5.3.2).  Now, specifically consider a bivariate system (X1, X2) (i.e. p = 2).  

Eqs. (5.1), (5.3) and (5.4) can then be written as follows: 
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21 12
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To the authors’ knowledge, there have so far been no general relations established 

for the association (or correlation) structure and the association parameter αij.  

Notwithstanding, the essential conditions of two limiting cases for the bivariate marginal 

distribution of any pair (Xi, Xj), pairwise independence and upper Fréchet bound, were 

given by KS.  That is, for the above bivariate system in Eq. (5.5), X1 and X2 become 
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independent (i.e. F = ) when either 1) α
21 XX FF 12 → 0 and both α1+ and α2+ are finitely 

nonzero or 2) both α1+ → ∞ and α2+ → ∞.  Furthermore, F in Eq. (5.5) approaches the 

upper Fréchet bound as α12 → 0 when both +111 /αα → 0 and +222 /αα → 0.  The only 

situation enabling this is that both α11 and α22 decrease to zero faster than α12.  These 

conditions can be verified through considering Eq. (5.5).  Note that the upper Fréchet 

bound is defined as the minimum of all marginal distributions.  For a system of p 

univariates, the upper Fréchet bound is [ ].,...,,min
21 pXXX FFF According to a classical 

result by Fréchet (1951), the joint cdf F will not be larger than the upper Fréchet bound, 

i.e.  for all (x[
pXXX FFFF ,...,,min

21
≤ ] 1, x2, … , xp).  In addition, the upper Fréchet 

bound itself is a cdf that conserves its marginal distributions or densities (Kemp, 1963), 

and all correlations of the upper Fréchet bound are maximal (Dall’Aglio, 1972; Kotz et 

al., 2000, 44-47).  For more details of the Fréchet bounds (both upper and lower) and 

their properties, see Dall’Aglio (1972).   Some additional properties related to the KS 

formulation can be found in Caputo (1998).   

 

 

5.3. Illustrations and Discussion 

In the following, a bivariate system (X1, X2) ≡ (U, W) is considered, where U and 

W specifically denote the horizontal and vertical velocity components in the ABL, 

respectively.  The domain of (U, W) is given to be the entire real plane.  As said in 

Section 5.1, U is assumed to be Gaussian while W is bi-Gaussian with positive skewness.  

Without loss of generality, U  and W  are set to zero, where  is the ensemble 
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average of a random variable.  The Gaussian pdf of U and the bi-Gaussian pdf of W are 

denoted by fU ≡ fU(u), and fW ≡ fW(w), respectively, and the cdfs of U and W are denoted by 

FU ≡ FU(u) and FW ≡ FW(w), respectively.  Their expressions are summarized below:  
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Bi-Gaussian: 
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where, according to the closure scheme proposed by Luhar et al. (1996),   
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By definition, σU and σW are the standard deviations of U and W, respectively 

(i.e.
2/12UU =σ and 

2/12WW =σ ). Let sU and sW denote the skewness parameters of U 

and W, respectively (i.e. 33 / UU Us σ=  and 33 / WW Ws σ=  > 0).  Since sU = 0, sW 

will be shortened as just s for convenience.  When s approaches zero, the bi-Gaussian 

form is asymptotically reduced to the Gaussian form.  Plots of fU and fW are not shown 

here but can be seen in Luhar et al. (1996). 

 

5.3.1. Investigation 

 Before proceeding, it is important to first investigate some general characteristics 

of a pdf based on the KS formulation and the chosen marginal densities.  Using the 

relations described in Section 5.2, the pdf of (U, W) can be formulated in a 

straightforward manner.  Figure 5-1 shows the contour plots of pdfs with four different 

sets of (α11, α12, α22) with s = 0.4.  All plots have ρUW ≥ 0, except for Figure 5-1d where 

ρUW < 0.  Figure 5-1c presents the case of pairwise independence of U and W by setting 

α11 ≠ 0, α12 = 0, and α22 ≠ 0.  Notice that the plot in Figure 5-1d is nothing but the mirror 

image (on zero plane: u = 0) of Figure 5-1a, having the same correlation with an opposite 

sign.  Algebraically, the mirror image is obtained by replacing u with  in the right-

hand-side term of Eq. (5.6) (due to the symmetry of f

u−

U).  One caution to note is that 

replacing w with  also produces negative correlation but does not conserve fw− W.   
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 Next, it is also of practical interest to examine some aspects of the effect of 

association parameters α11, α12, and α22 on the correlation structure (specifically speaking, 

what range of correlation can be found?) for the current bivariate system.  To do so, recall 

the fact that the upper Fréchet bound of a multivariate system itself is a cdf with the 

maximal correlation.  So, it is appropriate to first fix α11 and α22 at zero and then 

determine the trend of ρUW by varying the value of α12 alone.  The results from doing so 

are shown by Line 1 in Figure 5-2.  

 All results given in Figure 5-2 are of negative correlation.  The values of ρUW (and 

also other velocity statistics) were calculated by numerical integration over the entire real 

plane of (U, W) using logarithmic transformation (Press et al., 1992, p. 139-140) with 

extension to two variables.  In performing the integration for some sets of (α11, α22), 

computational difficulty was encountered when α12 is small.  According to our 

investigation, this is directly associated to the tail surface of a pdf (whose values are 

extremely small), causing overflows in evaluating a number of terms required in the KS 

formulation (e.g. the right-hand-side term in Eq. (5.6)).  To avoid this problem, such tails 

were truncated.  To maintain computational accuracy, the numerical values of the first 

three moments of U and W were checked, and the absolute differences from their 

specified values were controlled to be 1) < 0.01 for U , W , and  and 2) < 1% for 

, , and .  It is seen from Line 1 that the larger the magnitude of ρ

3/1
Us

2/1
Uσ 2/1

Wσ 3/1s UW is, the 

smaller α12 becomes (i.e. the closer to the upper Fréchet bound F approaches).  The 

magnitude of ρUW is high (> 0.9) at the upper end of the line.  Note that it should not be 
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Figure 5-1. Contour plots of the pdfs of (U, W) for s = 0.4 and four different sets of (α11, 
α12, α22) for the chosen bivariate system:  a) α11 = 0, α12 = 0.5, α22 = 0, b) α11 = 0, α12 = 2, 
α22 = 0, c) α11 ≠ 0, α12 = 0, α22 ≠ 0, and d) α11 = 0, α12 = 0.5, α22 = 0 (with u replaced by 
−u)  
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Figure 5-2. Effect of α12 on correlation for different sets of (α11, α22) for the chosen 
bivariate system 
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anticipated that ρUW → −1 as α12 → 0 since there is no requirement that is the case.  For 

the lower end, the trend decreases to zero, equivalent to the second condition of pairwise 

independence (see Section 5.2).  Lines 2-8 show the results for different nonzero values 

of α11 and α22, where pairwise independence can be approached when α12 → 0 or ∞.  It is 

thus expected that there must be at least one maximum in the correlation in between.  It is 

found that there is only one maximum present in each line.  The majority of results in 

Figure 5-2 use s = 0.4, with some given for s = 0.8 for comparison.  However, they share 

similar trends, with the magnitude of ρUW slightly lower for s = 0.8 as seen in Lines 2, 3-4, 

and 8.  Also notice that many different sets of (α11, α12, α22) can be found to fit a 

correlation.  However, they do not necessarily have the same higher cross product 

moments.  For example, in Line 7 (i.e. α11 = α22 = 1), Pt. A corresponding to ρUW ≈ −0.058 

with α12 = 0.2 has 22 / WUUW σσ  ≈ 0.005 and WUWU σσ 22 /  ≈ −0.016 whereas Pt. B 

corresponding to the same ρUW with α12 ≈ 10.7 has 22 / WUUW σσ  ≈ 0.025 and 

WUWU σσ 22 /  ≈ −0.039.   

 

5.3.2. Application to the ABL 

To formulate a pdf by the KS formulation for the idealized ABL, all statistics of U 

and W are given to be independent of time and interpolated as a function of elevation z.  

Interpolation formulas for convective conditions are used, where key scaling parameters 

are convective velocity scale , mixing height (or inversion depth) h, and Monin-

Obukhov length L (< 0).  Several formulas have been proposed in the literature.  For the 

sole purpose of illustration, this work adopts:  

*w
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where k is the von Karman constant (≈ 0.4).  In addition, s is assumed to equal 0.8 for 

simplicity.  The above formulas are from Eqs. (12.26), (12.15 or 12.16), and (12.31) in 

Rodean (1996), respectively.  Significant convection is assumed with  set to −100.   Lh /

Two solution sets of (α11, α12, α22) for the velocity pdfs according to the statistics 

specified above are given in Figure 5-3: one with α11 and α22 being fixed at 0.2 and the 

other with α11 and α22 being fixed at 0.1 and 0.5, respectively.  They correspond to Lines 

3 and 4 in Figure 5-2, respectively, where there typically exist two different values of α12 

yielding the same correlation: one on the upward side of a maximum (where ρUW 

increases with α12) and the other on the downward side.  In Figure 5-3, α12 is calculated 

for  = 0.001, 0.01, 0.05, 0.1, 0.2, … , 0.9, 0.99, and 0.999,  based on the upward side 

for the reason that α

hz /

12 will not grow very large when ρUW is small.  Note that all formulas 

in Eqs. (5.13)-(5.15) meet the inequality 222 WUUW ≤  for  ≤ 1, except for 

very small .  Since ρ

hz /

hz / UW decreases with height, α12 is large near the ABL bottom and  
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Figure 5-3. Values of α12 calculated to fit the correlation based on the interpolation 
formulas in Eqs. (5.13)-(5.15) with  = −100 Lh /
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Figure 5-4. Contour plots of the pdfs corresponding to the four chosen points in Figure 5-
3 
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small near the ABL top.  Four points (Pts. 1-4) in the figure are chosen for contour plots 

in Figure 5-4.  The first two are at  = 0.05, and the other two are at  = 0.5.  The 

scaling parameter used to transform U and W into a non-dimensional form in Figure 5-4 

is  (not σ

hz / hz /

*w U and σW as previously).  Comparing Figures 5-4a and 5-4b (corresponding to 

Pts. 1 and 2, respectively), while similar, the former appears to develop a small sharp 

diagonal ridge in the fourth quadrant.  Another difference is in their higher cross product 

moments such as 2UW  and WU 2  (see the lower right corner of each contour plot).  

For Figures 5-4c and 5-4d (corresponding to Pts. 3 and 4, respectively), similar findings 

are drawn.     

So far, negative correlation has been considered through taking advantage of the 

symmetry of fU.  A more general method suggested by KS can be carried out, which is the 

concept of a survival function.  For a system of p univariates, pairwise negative 

correlation between Xi and each of the other variables can be achieved (with all marginal 

densities still conserved) by directly substituting 
iXF−1  for  in Eqs. (5.1)-(5.3).  

Customarily, 

iXF

iXF−1  is called the survival function of Xi.  The principle behind the 

method is quite natural.  To help clarify this, an arbitrary bivariate system (X, Y) is 

considered here without loss of generality, where X and Y are univariates.  Let R be 

another univariate with R = −X.  It then follows that 

 

and)()( rfrf XR =−   .)(1)( rFrF XR −=−                            (5.16) 
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Also, ρRY = −ρXY.  With these, the first step is formulating FRY and fRY using the KS 

technique as usual, having ρRY ≥ 0.  The next steps are: replace r with r−  in the 

expressions of FRY and fRY, apply Eq. (16), and rearrange all terms.  As a result, FXY 

 and f),( yxF≡ XY )  with ρ,( yxf≡ XY ≤ 0 are finally obtained.  Similarly, another solution 

can be obtained by setting R = −Y and following those steps in a similar manner.  

However, it should be emphasized that the results from using XF−1  and  are not 

necessarily equivalent.  Return to the bivariate system (U, W) where negative correlation 

has been achieved by replacing u with 

YF−1

u− .  In fact, doing so is exactly equivalent to 

using  due to the symmetry of fUF−1 U.  For pdfs using WF−1 , two examples are 

illustrated in Figures 5-4e and 5-4f, showing the contour plots of the pdfs corresponding 

to Pts. 1 and 2, respectively (with α12 recalculated to fit the desired correlations).  By 

comparison, Figures 5-4a and 5-4e are of the same correlation and also look similar.  

However, a ridge develops diagonally and appears to be abruptly sharp in the fourth 

quadrant of the former but in the second quadrant of the latter.  Furthermore, their triple 

product moments are shown to be different.  For Figures 5-4b and 5-4f, both are clearly 

different and do not have a sharp ridge appearing on the surface.  

In conclusion, the KS formulation offers an alternative way to analytically 

formulate a pdf using the knowledge of marginal densities and provides a large class of 

pdfs that fit a given correlation.  It may be used in practice when marginal densities are 

well characterized or specified and a joint pdf is required to conserve its marginal 

distributions or densities.  Since more than one solution is possible, selecting a better or 

more practical choice requires consideration of higher product cross moments.  

Examination should be conducted to check if the desired range of each higher product 
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cross moment is found for a chosen set of the association parameters in a pdf.  However, 

the information of such moments is often unavailable.  An alternative way is considering 

the entropy of a pdf given its marginal densities and correlation, by which one with 

higher entropy may be favored over one with lower entropy.  Although the inherent 

nature of the KS formulation is of positive association, the concept of a survival function 

can be used to obtain negative correlation.  As seen, the illustration and discussion were 

limited to the formulation for two velocity components.  Nevertheless, the KS 

formulation can be extended to three velocity components in a straightforward manner.   
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CHAPTER 6 

 

LOCAL INCREMENTS IN LAGRANGIAN STOCHASTIC  

MODELS OF TURBULENT DIFFUSION 

(Coauthor: A. G. Russell) 

 

Abstract  

This work considers a number of mathematical aspects of local increments in a 

first-order single-fluid Lagrangian stochastic model of turbulent diffusion.  The algebra 

of Ito stochastic integrals and the concept of stochastic expansion are used in analyzing 

local increments and their statistics in multidimensional turbulence.  First, the statistics of 

the local increment of a function associated with the model and those related to the 

diffusion coefficient of the model are discussed.  It is addressed that the high-order terms 

in the expansion of the velocity structure function intrinsically exhibit strong anisotropic 

and velocity-dependent behavior, which may affect the underlying assumption of the 

isotropic form of the diffusion coefficient of the model.  Second, local numerical errors 

arising from the truncation of higher-order terms in the Euler, Milstein, and order-1.5 

strong Taylor schemes are concisely given.  The accuracy of numerical solutions by those 

schemes is examined analytically.  Lastly, a number of restriction strategies of time step 

sizes that have been used in the literature for the Euler scheme and their roles in 

numerical implementation are investigated in detail.   
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6.1. Introduction 

Lagrangian stochastic modeling is a type of turbulence modeling, which has been 

considerably advanced from the seminal work of Taylor (1921) and widely used for 

studying the transport of a scalar in a turbulent flow (Thomson, 1987; Pope, 1994; 

Wilson and Sawford, 1996).  Its formulation assumes the kinematics of a fluid particle 

moving in the Lagrangian coordinate reference as a stochastic process. Some major 

advantages of this type of modeling are that it is capable of directly incorporating the 

nonstationarity and inhomogeneity of turbulence and its numerical implementation is 

conceptually natural and straightforward.  In the class of first-order single-fluid 

Lagrangian stochastic models (LSMs), the joint process of a particle’s displacement and 

velocity (x, u) is assumed to evolve continuously with time in a Markov fashion, which is 

the framework of this study.  It is also well known that a large number of increments in 

the evolution of an LSM involve from one point of time to the next.  From a physical 

viewpoint, turbulence contains a broad range of scales of motion from the smallest (or 

Kolmogorov) scale to the large scale determined by flow geometry.  From a 

mathematical viewpoint, the model formulation is presented in a differential form (i.e. 

defined over an infinitesimal time dt).  As the model propagates itself over a small time 

increment ∆, the model is integrated to obtain its new state, which can be expressed as a 

stochastic expansion series.  However, it is impossible to include all expansion terms in 

consideration, necessarily leading to the truncation of high-order terms.  As a 

consequence, fine structures associated with the truncated terms are lost, giving rise to 

two additional quantities: local numerical increments and local numerical errors (see 

their definitions in Section 6.5).  The adjective “local” is used to emphasize that ∆ is 
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being small at any particular points of time.  The particle’s velocity (i.e. Lagrangian 

velocity) will be referred to as the velocity for conciseness. 

Motivated by the above facts, this work applies the algebra of Ito stochastic 

integrals and the concept of stochastic expansion to analyzing local increments and their 

statistics in detail during the propagation of the model over a time increment.  The 

objective of doing so is to gain some additional understanding toward the validity and 

accuracy of the model during a time increment.  For the sake of generality, the analysis is 

done for multidimensional turbulence.  First, the definition of stochastic differential 

equations (SDEs) of the model in a vector-matrix form is described and followed with 

some essentials of Ito calculus (mainly, Ito formula, Wagner-Platen formula, and a 

standard convention for Ito integrals).  These not only are useful in stochastically 

expanding the local increment of a function associated with (or evolving with) the model 

but also facilitate determining the statistics of a local increment, particularly in the 

multidimensional framework.  Then, the general forms of the first three order statistics of 

the local increment of a function associated with the model are given.  Some statistics 

related to the diffusion coefficient of the model are discussed in detail.  Furthermore, 

local numerical errors arising from the truncation of higher-order terms in numerical 

differencing schemes are included.  Although there are numerous schemes available for 

numerical stochastic integration (Kloeden and Platen, 1989), only the Euler, Milstein, and 

order-1.5 strong Taylor schemes are considered here, with emphasis on the first due to its 

simplicity and widespread use.  To help qualitatively compare and discuss the accuracy 

of the results predicted by the implementation of those schemes, the classical model for 

one-dimensional stationary homogeneous turbulence is adopted.  Two major advantages 
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of using this model are that its analytical solutions are available and the model itself is 

linear enabling the numerical solutions to be directly deduced through some recurrent 

relations of the local increments of the state variables (i.e. x and u).  Lastly, a number of 

restriction strategies of time step sizes for the Euler scheme for one-dimensional 

turbulence, which have been used in many workers (e.g. Thomson, 1987; Rotach et al., 

1996; Schwere et al., 2002), are considered.  It is of interest here to examine the roles that 

those strategies play in numerical simulation within a multidimensional framework. 

The analysis does not include the presence of a spatial boundary where a viscous-

dominated region exists.  Some techniques have been proposed to specially treat such 

problems.  For instance, Dreeben and Pope (1998) use a wall function in the model so 

that Reynolds stresses in a near-wall region can be characterized. Another approach is to 

separate the turbulence-dominated (or away-from-wall) region from the viscosity-

dominated (or near-wall) region, assuming the error arising from excluding the viscosity-

dominated region to be insignificant.  With this, only the turbulence-dominated region 

remains in consideration.  For details of this approach, see Wilson and Flesh (1993), 

Thomson and Montgomery (1994), and references therein.  

 

 

6.2. Mathematical Descriptions 

6.2.1. Notations 

Before proceeding, some notations and symbols that will be used in the future are 

given here.  A bold letter usually denotes a nonscalar quantity.  A dot (.) represents 

proper variables in a function or an expression.  The letter R is the entire set of real 
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numbers, Ck(Rn, R) is the class of  k-time differentiable scalar functions: Rn → R, where 

n is a positive integer, and  L2 is the class of norm-squared (L2-type) integrable scalar 

functions.  When a function is said to be velocity-dependent, it means that the value of 

the function at any time depends on the value of u at that time.  Likewise, a velocity-

independent function is a function whose value at any time does not depend on u at that 

time.  The symbol O(.) denotes a scalar quantity of the order (.).  A lower-case Roman 

subscript (e.g. i, i1, i2, j, j1, j2, k, etc.) denotes a directional index and takes on the value of 

1, 2, … , d (where d is the number of dimensions of turbulence).  Similarly, a lower-case 

Greek subscript (e.g. α, 1α , 2α , β, 1β , 2β , η, etc.)  denotes an  integer index and takes 

on the values of 1, 2, … D (where D = 2d, as will be seen later).  These subscripts are 

also allowed to be zero when they are members of an integer sequence of an Ito integral 

variable (see Section 6.3.2).  The letter ω represents a trajectory or realization of the 

model.   denotes a normal distribution with mean a and variance b, and Cov(.) 

denotes the covariance of two random variables.  Only Cartesian coordinates are used, 

and tensor algebra always strictly applies unless indicated otherwise.  The n

),( baN

th-order 

statistic of the component(s) of Eulerian velocity uE at location x and at time t is denoted 

by 
niii uuu ...

21
),(...

21
tuuu

niii x≡ , where  is the ensemble average.  Since the 

Eulerian velocity equals the Lagrangian velocity at x and at t, uE is written as just u.  

 

6.2.2. Stochastic differential equations 

 Given a trajectory ω, the joint process {( )} in d-dimensional turbulence is 

expressed by the following system of SDEs  

tt ux ,
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where  is the d-dimensional drift coefficient vector related to 

,  is the d × d diffusion coefficient matrix for , 

and  is the d-dimensional vector-valued uncorrelated standard Weiner processes. 

The superscript t is used to specify the time at which a variable (or a function) is 

evaluated or defined.   All differentials and variables above are defined at time t ∈ [t

)),(),(()( tttt ωωω uxaa ≡

)(d ωtu )),(),(()( tttt ωωω uxbb ≡ )(d ωtu

)(ωtW

o, T], 

where to and T are the initial time and the integration time, respectively.  To convert the 

above system into a vector-matrix form in a formal manner, let { tY } ≡ {( , )} and 

the triplet (Ω, ℑ, P) be its corresponding probability space, where Ω, ℑ, and P are the 

sample space of all possible trajectories (i.e.

tx tu

∈∀ω  Ω), the σ-algebra on Ω, and the 

probability measure for ℑ, respectively.  Then, Eq. (6.1) can be rewritten by 

 

,)(d)(d)()(d ωωωω tttt t WSQY +=                           (6.2) 

 

where  is the D-dimensional solution vector,  is the D-

dimensional drift coefficient vector,  is the D×D symmetric 

diffusion coefficient matrix, and  is now D-dimensional.  Comparison of Eq. (6.1) 

and Eq. (6.2) gives 

)(ωtY )),(()( ttt ωω YQQ ≡

)),(()( ttt ωω YSS ≡

)(ωtW
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So, it follows that D = 2d.  It is seen that only the second half of the noise components in 

 in Eq. (6.2) plays a role in the evolution while the first half is trivial (i.e. dummy) 

due to zero-valued components in .  Given the initial condition , 

the integration of Eq. (6.2) from t

)(ωtW

)(ωtS )()( ωω oto YY ≡

o to t is 

 

,)(d)),((d)),(()()( ωωωωω ∫∫ ′′′′′ ′′+′′=−
t

t

tt
t

t

tot

oo

ttt WYSYQYY             (6.4) 

 

for .  The last term on the right-hand side (RHS) above is an Ito stochastic 

integral (i.e. its integrand being nonanticipative).  It is important to note that the SDE in 

Eq. (6.2) needs to satisfy the Lipschitz and growth restriction conditions so that the 

pathwise uniqueness and existence of a solution trajectory  are ensured (Gardiner, 

1997, p. 94; Øksendal, 2000, p. 66-70), as assumed here.  Then, it can be said that 

, , and  belong to L

Tttto ≤≤′≤

)(ωtY

)(ωtY )(ωtQ )(ωtS 2(T) for all t ∈ [to, T].  For conciseness, given a 

fixed trajectory ω, the notations , , , , , and  will 

be shortened as , , 

)(ωtx )(ωtu )(ωtY )(ωtQ )(ωtS )(ωtW

tx tu tY , , , and , respectively.    tQ tS tW

It has been acknowledged that the model is not rigorously justified because the 

particle’s acceleration is still correlated over the order of the Kolmogorov time scale τη 

(Monin and Yaglom, 1975, p. 370, Wilson and Sawford, 1996).  When the model 
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propagates itself over ∆ ~ τη (or smaller), the Markovian assumption is violated.  

However, the Fourier analysis by Wilson and Zhuang (1989) for stationary isotropic 

turbulence suggests that an unlimited decrease in a time step does not produce any 

significant effect in dispersion because, first, the low frequency end of the velocity 

spectrum is most effective in dispersion and, second, there is small variation in the low 

frequency end of spectrum as the constant time increment takes on different values. 

Unfortunately, difficulties and complexities arise and appear hard to resolve in the case of 

nonstationary inhomogeneous turbulence (Pasquill and Smith, 1983, p. 29).  To make the 

analysis possible, it is necessary to assume that the velocity fluctuations attributed to the 

nonstationarity and inhomogeniety contribute to the energy spectrum mostly in low 

frequencies such that an unlimited decrease in a time step size does not deteriorate the 

results.  

One consistency condition of the model in question is the inertial subrange theory 

(Kolmogorov, 1941), which allows the form of b in Eq. (6.1) to be determined based on 

the velocity structure function for a time increment within the inertial subrange (i.e. for τη 

<< ∆ << τ, where τ is the local time scale of large motions or eddies).  Also, τ is 

sometimes called the local decorrelation time scale of the velocity.  In this range, 

turbulence is locally isotropic, and turbulence statistics have a universal form as a 

function of the mean dissipation rate of turbulent kinetic energy (ε ) and independent of 

viscosity.  Through some mathematical relationship, the form of b can be found.  For a in 

Eq. (6.1), it is a function of velocity, local pressure gradient, velocity moments and their 

gradients, mean dissipation rate, etc. Two conventional approaches used in determining 

the form of a are: direct closures (Pope, 1994) and the well-mixed condition (Thomson, 
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1987).  The former applies a certain level of modeling some turbulence statistics to give a 

closed form of a.  The latter imposes a mathematical constraint that the distribution of 

particles initially well mixed (with respect to both position and velocity) will always 

remain so, by which a can be solved through the Fokker-Planck equation corresponding 

to the model.   

 

 

6.3. Ito and Wagner-Platen Formulas 

6.3.1. Ito Formula 

Let an arbitrary ℑ-measurable scalar function f ≡ f( tY , t) associated with the 

model in question belong to the classes L2(T) and , where D)],,[ (2 RDC Ttof
k ×≥

f ⊂ RD is 

the smooth domain of f.  The Ito formula expresses the differential form of f by 

(Gardiner, 1997, p. 95-96; Øksendal, 2000, p. 48-49) 
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From Eq. (6.5), it is seen that any function f associated with the model also evolves 

stochastically with time. 

 

6.3.2. Wagner-Platen Formula 

  The Wagner-Platen (or Ito-Taylor) formula (Wagner and Platen, 1978; Platen and 

Wagner, 1982) expresses the increment of a function associated with an SDE by integral 

terms.  For example, the integration of Eq. (6.5) over [t, t + ∆] ⊂ [to, T] gives 
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where  is the remainder term after expansion up to nnfR ,
th-tuple integrals for n being a 

positive integer (for Eq. (6.7), n = 1).  Because each integral on the last line of Eq. (6.7) is 

of Ito type, the term in front of it is then called an Ito coefficient.  If f belongs to 

, it is straightforward to write  as follows: )],,[ (4 RDC Ttof
k ×≥

1,fR

 

∫ ∫∫ ∫

∫ ∫∫ ∫
∆+ ′

′′′′′
∆+ ′

′′′′

∆+ ′
′′′

∆+ ′
′′

′′+′′′+

′′′′+′′′′′=

t

t

t

t

ttt
t

t

t

t

tt

t

t

t

t

tt
t

t

t

t

t
f

WWtfLLtWtfLL

WttfLLtttfLLR

.dd),(dd),(

dd),(dd),(

2121

1,

ββββββ

ββ

YY

YY
      (6.8) 

 

Note that the results in Eqs. (6.7) and (6.8) are obtained using  
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It is also possible to continue expanding ∆f by applying the same procedures to each 

integrand in Eq. (6.8) as long as the higher-order derivatives of f exist.  For example, for f 

∈ ,   )],,[ (6 RDC Ttof
k ×≥
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where  
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The first three integral terms on the RHS of Eq. (6.10) can be evaluated readily.  The next 

two turn more difficult, and the last term becomes extremely difficult.  The evaluation 

and expressions of these integrals are given and concisely discussed in the Appendix.  A 

standard convention is adopted for Ito integrals (Wagner and Platen, 1978; Platen and 

Wagner, 1982; Kloeden and Platen, 1991; Li and Liu, 1997) to ease the algebraic 

manipulation.  That is, the variable  is used to denote such integrals according to the 

following definition: 

µ~I

 

Definition: Let µ~  be an integer sequence 1µ , 2µ , … , gµ  ∈ {0, 1, 2, 3, … } and  g ≥ 0.  

The definition of  is given by µ~I
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where  is evaluated at t, and ≡ t.  In case of µ~I tW0 α~ being null (i.e. g = 0), II =µ~  is 

given equal to unity (i.e. I = 1).  As said previously, each parenthesized subscript of a 

variable denotes the time at which that variable is defined.  Some examples of using Eq. 

(6.12) are given below: 
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When a multiplication product of two Ito integrals is desired, the formula in Eq. (6A.3) 

(see Appendix) is helpful and can be used for its calculation.  Following the above 

definition, the RHS terms of Eqs. (6.10) and (6.11) can be rewritten by 
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respectively.  For a special case of f ∈ , it can also be shown that )],,[ ( RDC Ttof ×∞
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where n! is the n-factorial, the bracketed term  is expanded in a binomial manner, and 

the resulting expansion operating on f is evaluated at .  Notice that the relation in 

Eq. (6.16) is similar to a traditional Taylor series except for the appearance of the last 

term in the brackets .  The RHS of Eq. (6.16) is directly obtained from rearranging 

Eq. (6.3) and then integrating both sides over ∆ (6.i.e. from t to t + ∆).  The importance of 

the above formula is that the expansion of ∆f can be expressed in terms of both ∆ and 

n][

),( ttY

n][

tY∆ , which helps indicate the leading order of the local numerical error of ∆f once the 

local numerical error of tY∆  is known. 

Since the statistical behavior of local increments is central to this study, it is 

appropriate to briefly address another mathematical notation representing a conditional 

expectation before proceeding.  As a convention, the expectation of a function f ≡ 

 associated with the process {),( tf tY tY } at the future time ∆+t  given  is written as tℑ

tt tf ℑ∆+∆+ |),(Y , where  represents the history of the evolution of the process from 

beginning until the present time (i.e. from t

tℑ

o to t).  (Customarily,  is a member of the 

increasing family of sub σ-algebras of ℑ in the triplet up to time t, and { } is called the 

filtration to which the process is adapted.)  Because the process in question is Markovian, 

tℑ

tℑ
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only the knowledge of the process at the present time matters.  Then, it immediately 

follows that (Øksendal, 2000, p. 31-33) 
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where .  As seen in Eq. (6.17), the notation  makes convenient conditioning 

the process in question to be defined at present time t, and then it will be used for the rest 

of the work.   

oto ℑ≡ℑ tℑ

 

 

6.4. Statistics of Local Increments 

In the following, the subscript t will be dropped off from variables or functions 

defined or evaluated at time t for convenience (e.g. tY , , → Y, x, u).  As stated in 

Section 6.2, the inertial subrange theory is required as a consistency condition of the 

model.  According to the theory, for τ

tx tu

η << ∆ << τ, the diffusion coefficient of the model 

(or b) can take a universal form that is independent of u but depends only on ε and ∆ 

only.  It is thus appropriate to write b ≡ b(x, t) instead.  Here, it is of interest to examine 

the general form of the statistics (up to third order) of the local increment of a function 

associated with the model in question (which will be helpful for future analysis) and to 

discuss those related to b in detail.  Before proceeding, it is useful for future work to 
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explicitly write here the expansion forms of the local increments of some basic functions 

(here, ∆xi and ∆ui).  To do so, using the Wagner-Platen formula in Eq. (6.14) for f ≡ xi 

gives    
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where 
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The Ito coefficients , , , , , and  

are zero and thus do not appear in Eqs. (6.18) and (6.19).   Likewise, for ∆u

ij xLL ijj xLL
21 ij xLLL ijj xLLL

21 ijj xLLL
21 ijjj xLLL
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Note that the term  does not appear in Eq. (6.20) due to its zero value.  For the 

full expression of , it cannot be given here due to its lengthiness.   In addition to ∆x

ijj uLL
21

2,iuR i 

and ∆ui, consider the local increment of a velocity-independent function ψ ≡ ψ (x, t).  

Given ψ ∈  (where D)],,[ ( RDC Tto
k ×ψ ψ ⊂ Rd represents the corresponding smooth 

domain, and k is large), its local increment can be expressed by   

 

.2

),(

2,0,,0,0

22

2

2

0

ψ
ψψψψψ

ψψ
ψ

RI
x

bI
xx

uu
x

a
xt

u
t

I
x

u
t

t

j
k

jk
lk

lk
k

k
k

k

k
k

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
+

∂
∂

+
∂∂

∂
+

∂
∂

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=∆ x
    (6.21) 

 

Note that ψjLL  and ψ
21 jj LL  are zero.    

 

6.4.1. General forms of the statistics of the local increments of a function 

 For simplicity, any scalar function associated with the model can be categorized 

into two categories: velocity-dependent and -independent, which are denoted by 

 and , respectively.  Examples of the former type are u),,((.)(.) tuxφφ ≡ ),((.)(.) txψψ ≡ i, 

ai, etc., and those of the latter type are xi, jii uuu , , bi,j, ε , etc.  To facilitate the 
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analysis, those functions are assumed to be fairly smooth such that all derivatives 

required in the following expressions exist.  For velocity-dependent functions, it can be 

shown using Eqs. (6.14), (6.18), (6A.1), and (6A.3) that 
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where 
21, jjδ  is the Kronecker delta function, and 

4321 ,,, jjjjλ  satisfies  =ℑ tjjjj III |
4321 ,       

According to Eq. (6A.3),  .2
,,, 4321

∆⋅jjjjλ
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Note that the last term in the second line equals zero according to the mean value theorem 

(Gardiner, 1997, p. 90).  As a result,  
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Similarly, for velocity-independent functions,  
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Notice that although Eqs. (6.27)-(6.29) are the reduced forms of Eqs. (6.22)-(6.24).  

 

6.4.2. Statistics of local increments related to the form of the diffusion coefficient 

As noted previously, the form of b is based on using the velocity structure 

function for for τη << ∆ << τ.  That is, 

 

,|,, tjimjmi uubb ℑ∆⋅∆=                         (6.30) 

 

which takes the isotropic universal form (Monin and Yaglom, 1975, p. 358)  

 

,| , εδ ojitji Cuu =ℑ∆⋅∆                        (6.31) 

 

where Co is the universal Kolmogorov constant.  It is of interest here to discuss the 

validity of Eq. (6.30) to some extent.  To do so, it is necessary to express the velocity 
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structure function as an expansion of ∆.  Using Eq. (6.23), the velocity structure function 

in Eq. (6.30) can be expressed by 
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The above result clearly shows that the expansion of the velocity structure function may 

not permit b to be truly both isotropic and velocity-independent as posed in its definition.  

This can directly be seen from the high-order terms on the RHS of Eq. (6.32) 

(specifically, Term (II) in which both u and a appear).  Although the form of a is not yet 

specified, it is known to be an explicit function of u (i.e. velocity-dependent).  Moreover, 

the high-order terms are not necessary to have an isotropic form.  To reduce the effect of 

anisotropy and velocity dependence for the relations in Eqs. (6.30)-(6.31), it is important 

to maintain the magnitudes of Terms (II) and high-order terms to be much smaller than 

that of Term (I).   In this spirit, it seems appropriate to impose the following constraint 

 

.)II()I( ∆⋅>>                                      (6.33) 

 

for all i, j, so that the validity of the definition of b is ensured to good approximation of 

O(∆).  Implementing the above constraint may result in ∆ being smaller than the time 

scales in the inertial subrange, but this may be permitted due to the assumption of the 
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unlimited decrease in ∆ (see the end of Section 6.1).  The anisotropic behavior of b found 

in numerical simulation is also reported in Pope (2002) where the results from a first-

order LSM and direct numerical simulation (DNS) for multi-dimensional stationary 

homogeneous turbulence are compared.  It was found that b can possess significant 

anisotropy.   

 As discussed above, there is an inconsistency between the form of b given by the 

inertial subrange theory and the mathematics associated with the model.   To further 

discussion, consider ttjjtii uuuu ℑℑ∆−∆⋅ℑ∆−∆ |)|()|( , the velocity structure 

function in a central sense, where  

 

tittiti uuu ℑ−ℑ≡ℑ∆ ∆+ ||| )(  uu tti −ℑ= ∆+ |)( .      (6.34) 

 

In light of the local isotropy in the inertial subrange, ∆ui has an isotropic probability 

function that is independent of xi and ui (Monin and Yaglom, 1975, p. 358-359), resulting 

in the odd moments of ∆ui being zero.  Accordingly,   

 

,||)|()|( ∆=ℑ∆⋅∆=ℑℑ∆−∆⋅ℑ∆−∆ εotjittjjtii Cuuuuuu    (6.35) 

  

for τη << ∆ << τ.   Using Eq. (6.24), its corresponding expansion is 
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               (6.36) 

 

It is understood that the relations given by Eqs. (6.32) and (6.36) should be equivalent 

from Eq. (6.35) but are in fact different.  The reason is that the model does not perfectly 

account for the physical behavior of a fluid particle (strictly speaking, in view of local 

isotropy).  Notice that the only difference between Terms (II) and (IV) are the presence of 

aiaj.  Notwithstanding, it cannot be said that Eq. (6.36) is more appealing because the 

form of a is not specified.     

In addition, there is another possible choice besides the above statistics, as given 

in Eq. (6.27) of Thomson.  It is the structure function of displacement in a central sense, 

i.e. ttjjtii xxxx ℑℑ∆−∆⋅ℑ∆−∆ |)|()|(  that can be expanded as follows:   
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The LHS terms share a similarity to those of Eqs. (6.33) and (6.36) in that the first term 

on the RHS is the tensor product .  However, the displacement structure function 

does not have a universal form in the inertial subrange and is of no use from a practical 

standpoint.   

mjmi bb ,,

It should be noted that even though b is given to be velocity-independent, the 

statistics of its local increment are usually not so.  For example, let bi,j ≡ b(x, t) for i = j.  It 

is not difficult to show that 
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for n is a positive integer.  The bracketed term on the RHS above contains u, indicating 

that the LHS term is dependent on the velocity.   

 

 

6.5. Some Aspects of Local Numerical Increments and Errors 

To obtain the solution to an SDE, the integration of the equation has to be carried 

out either analytically or numerically.  Nevertheless, the analytical solutions may be 

available only for an SDE that is linear (and nonlinear but reducible to linear).  For many, 

their solutions have to be obtained through numerical integration using a numerical 

scheme.  As mentioned in Section 6.1, only a few number of expansion terms remain 

after the truncation of high-order terms for a scheme, causing local numerical errors to 

take place and then be propagated along the path of integration.  Briefly discussed here 
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are the local numerical errors arising from the truncation in the Euler, Milstein, and 

order-1.5 strong Taylor schemes (to be referred hereafter to as EL, MS, and ST, 

respectively).  To numerically integrate the model in question, the time domain [to, T] is 

discretized into N intervals (not necessarily equal for every interval), where N is a large 

positive integer.  Let tk be the integration time at step k (for k = 0, 1, 2,  … , N − 1, N), and 

let  be the time step size at time t)(k∆ k (i.e. , with tkk
k tt −≡∆ +1

)(
k=0

 ≡ to and tN
  ≡ T).   For a 

given trajectory, define  as the local numerical error of a scalar function 

 at step k (i.e. at t

)()( kfδ

),,( tff ux≡ k), i.e. 

 

,)( )1()1(†)( ++ −≡ kkk fffδ                            (6.39) 

 

where  and are the exact and numerical values of f at t)1(† +kf )1( +kf k+1, respectively, 

assuming  to be exact at step k.  Thus, it is straightforward to write ),( )()( kk ux

 

,)( )()()(† kkk fff δ+∆=∆                                 (6.40) 

 

where  and  are the exact (without truncation) 

and numerical (with truncation) increments of f, respectively, given high-precision 

calculation (which is assumed to be the case here).  For conciseness, 

)()1(†)(† kkk fff −≡∆ + )()1()( kkk fff −≡∆ +

)(k∆  and  will be 

hereafter written as just ∆

)(
~
kIα

 and , respectively.   α~I

The differencing description of the EL, MS, and ST schemes and local numerical 

errors related to them are given below: 
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EL: By definition, the scheme is written by 
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where Yα is the α th component of the solution vector Y.  Using Eqs. (6.19) and (6.21), 

(6.41) can be alternatively written by 
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Note that all derivative terms above are evaluated at .  It is seen that the 

leading orders of  and are generally of  (based on the orders of 

the standard deviations of  and ).   As for the local numerical error of a function 

for this scheme, their evaluation may not be as straightforward as in Eq. (6.43) because 

the scheme integrates the model with respect to the state variables (not functions 

associated with it).   Therefore, one may have to evaluate it indirectly through the relation 

),,( )()(
k

kk tux

)()( k
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iuδ )( 2/3∆O

0,jI jI ,0
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in Eq. (6.10) instead under the assumption that the function is fairly smooth.  In that case, 

it can be approximately said that   
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where φ and ψ denotes arbitrary velocity-dependent and -independent scalar functions, 

respectively. 

 

MS: For this scheme,  
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As seen, this scheme requires the random number generation of , which is 

extremely difficult in practice for 

21 ,ββI

21 ββ ≠  (see Appendix).   However, using Eqs. (6.19) 

and (6.21), Eq. (6.45) finally turns out to be equivalent to Eq. (6.42), which is the EL 

scheme.  Hence, the results given by Eqs. (6.43) and (6.44) for the EL scheme 

automatically apply for this scheme.   

 

ST: By definition, 
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Using Eqs. (6.19) and (6.21) again, the above equation becomes  
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The random number generation of and  is required in the scheme.  

Fortunately, the Ito coefficients corresponding to these integrals are zero, causing them to 

drop out and enabling the scheme to be implemented.  The disadvantage of the scheme is 

that a number of derivative terms of a are needed to be evaluated for every time step and 

21,ββI
321 ,, βββI
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can be computationally burdensome, especially when the form of a is complex or not 

analytically available.  For a function associated with the model, Eq. (6.10) suggests that 
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where φ and ψ are the same as in Eq. (6.44).  

 

Evidently, the ST scheme is of the highest order among all three schemes considered here  

 

 

6.6. Restriction of Time Step Sizes for the Euler Scheme 

In the following, considered is how small time step sizes should be in the 

numerical integration of the model for the EL scheme.  It is true that a constant time step 

size can be used in integration, but it often turns out not to be practical especially when 

the nonstationarity and inhomogeneity exist in the problem (requiring the size to be 

extremely small).  Thus, the use of variable time step sizes becomes necessary.  The basic 

idea behind it is to restrict time step sizes to be small so that the trajectories of the model 

are well representative of the exact solutions but not too small to make the computation 

uneconomical.  In addition, small time step sizes are important in that the loss of fine 

structure due to the truncation of high-order terms in the scheme is reduced.  To the 

authors’ knowledge, there have so far been no standards or well-established criteria 

proposed for selecting the variable time step sizes for the EL scheme.  However, 

Thomson suggested a number of restriction strategies for one-dimensional stationary 
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inhomogeneous case, and others have adopted them in practice.  Those strategies are: for 

step k, 
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where  denotes  )(kσ
2/12)(ku , and all directional indices are dropped out for one-

dimensional turbulence.  Although the above strategies are somewhat tentative, they are 

indeed useful in a sense that they are to ensure the accuracy of numerical results to a 

certain degree.    

To discuss the roles of those strategies, it is perhaps appropriate to begin with 

stating that the time step size at a particular step should be sufficiently small that the 

magnitudes of local numerical errors with respect to x and u are small so as to achieve 

the high accuracy of the results.  In other words,  and  should be well 

approximated by  and , respectively, for all i = 1, 2, … , d.  This also implies 

that all statistics of  and  should be approximated by those of  and 

, respectively.  Thus, it is straightforward to impose: 
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respectively. However, the above inequalities are not of much help since most of them 

are stochastic in nature, inhibiting algebraic solution.  Then, it appears necessary to 

impose constraints in terms of statistics instead.  For conciseness, the discussion is here 

limited only to the first two orders.  In doing so, impose the following inequalities: 
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where .  The inequalities above will be referred to as the restriction strategies 

S1-S4, respectively.  Using the algebra of Ito integral as previously, it can be shown that 
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Likewise, 
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By Eqs. (6.53) and (6.54), the restriction strategies given by Eq. (6.52) are found:   

 

S1: Combining (6.53a, d) in (6.52a) gives 
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If the last term on the RHS above is neglected (which is appropriate due to ∆ being 

small), Eq. (6.55) then suggests 
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where the summation over i does not apply.  When this strategy is applied, it can be said 

that the EL scheme approximates )()(† | kk
ix ℑ∆  to .  For the one-dimensional 

case, if 

)( 2∆O
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which is consistent with the first strategy in Eq. (6.50).    

 

S2: Combining Eqs. (6.53b, c, e) in Eq. (6.52b) gives 
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Once the last term on the RHS is neglected, the above inequality suggests 
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where the summation over i and j does not apply, and 
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When the above strategy is applied, the EL scheme approximates )()(†)(† | kk
j

k
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to .  For the one-dimension case, Eq. (6.59) is just )( 3∆O
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Furthermore, if excluding the cross statistics and substituting  for )(kσ )(ku , Eq. (6.61) is 

simplified to 
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which is consistent with the second strategy in Eq. (6.50).    

 

S3: Combining Eqs. (6.54a, d) in Eq. (6.52c) gives 
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Once the last term on the RHS is neglected, Eq. (6.63) suggests 
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where the summation over i does not apply, and 
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As seen, using this strategy is also straightforward and helps ensure the approximation of 

)()(† | kk
iu ℑ∆  to .  However, the derivatives of a needs to be evaluated, which 

can be time-consuming if the form of a is complicated or not analytically available.   

)( 2∆O

 

For S4, it can be obtained using Eqs. (6.54b, c, e) in (6.52d) and neglecting all 

terms of  and higher, resulting in a complicated cubic relation (with respect to ∆).  

Therefore, this strategy may not be suitable for use.  As for the last strategy in Eq. (6.50), 

)( 3∆O
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it is straightforward to see that the strategy concerns the locality of a time increment for a 

scalar function.  That is, the time step size should not be too large to change the value of 

the function during a time step.  So, it is important to select a time step size being small 

compared to the time scale of the nonstationarity and inhomogeneity of turbulence that is 

generally defined as the characteristic time scale of the tangent of the function.  Because 

many functions are associated with the model, it is necessary to limit only those that are 

essential to the model, e.g. iu , ji uu , kji uuu , ε , etc.  Such functions are 

typically smooth and also independent of u.  Now, suppose that there are n functions 

chosen for consideration.  Also, let them be denoted by for i = 1, 2, … , 

n.  Then, the time step size at step k should be restricted to be small such that.   

),()()( tii xψψ ≡
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which is consistent with Eq. (6.50).  It should be emphasized again that the restriction 

strategies described above are tentative (i.e. not based upon a rigorous treatment).  

Nevertheless, they are conceptually simple and can ensure the accuracy of the simulation 

results to some extent (at least in terms of local statistics).  Extension to higher-order 

statistics is also possible but may not be practical.  
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6.7. Conclusions 

 Several aspects of local increments in a first-order single-particle Lagrangain 

stochastic model of turbulent diffusion at large Reynolds numbers have been analyzed 

and discussed.  The framework of this study is nonstationary inhomogeneous turbulence 

under the assumption that an unlimited decrease in a time increment does not deteriorate 

the solution of the model.  Another major basis of the work is the inertial subrange theory 

of Kolmogorov.  The main tools employed in the analysis are the algebra of Ito integrals 

and the concept of stochastic expansion.  The Wagner-Platen formula is of great 

importance to appropriately express the local increment of a function associated with the 

model to as a series of the time increment.  For the statistics of a local increment, their 

determination is facilitated using the product formula of two Ito integrals.  Using these 

tools enables us to determine the expanded forms of the statistics of local increments and 

those related to the diffusion coefficient of the model.   

The analysis shows that the form of the diffusion coefficient of the model 

possesses an intrinsic tendency of anisotropy and velocity dependence, which can be 

clearly seen from high-order terms in the expansion of the velocity structure function.  In 

order to alleviate these physical effects to good approximation, the magnitude of a time 

increment should be sufficiently small certain constraints are satisfied.  An inconsistency 

arises between the local isotropy in the inertial subrange and the mathematical 

formulation of the model, which is seen directly from considering another structure 

function that is the velocity structure function in a central sense.  Since turbulence is 

locally isotropic, this velocity structure function also has a universal form and thus can be 

used as an alternative in assigning the form of the diffusion coefficient.  From the 
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standpoint of local isotropy, both velocity structure functions are comparable.  However, 

it turns out that the expansions of these velocity structure functions are different, which is 

indicative of the aforementioned inconsistency.   

 In investigating local numerical increments and errors for the Euler (EL), Milstein 

(MS), and order-1.5 strong Taylor (ST) schemes, it is straightforward to say that the ST 

scheme is the best among all in terms of accuracy because of the higher level of 

truncating high-order terms in the scheme.  Hence, the local numerical errors of a 

function in the ST scheme are in general of a higher order than those of the other two 

schemes.  Given the isotropic (and velocity-independent) diffusion coefficient, both EL 

and ML schemes turn out to be equivalent for the model in question.  The roles of three 

restriction strategies of time step sizes for the Euler scheme that have been applied by 

some workers have been examined.  Two of them are to constrain time step sizes to be 

small such that the accuracy of the first- and second-order statistics of ∆xi is ensured. The 

other strategy corresponds to the restriction of the local time scale of nonstationarity and 

inhomogeneity of turbulence. Extension to the first-order statistic of ∆ui is made but its 

corresponding strategy may not be practical for use when the drift coefficient does not 

have a simple form.   

 

 

Acknowledgements 

The authors thank Drs. Michael Borgas (CSIRO, Australia) and P. K. Yeung of 

(Georgia Institute of Technology) for their helpful discussion.  This work is supported by 

the U.S. EPA under Contract No. CR827327-01.   

 165



 

 

Appendix. Ito Integrals 

 Only single to triple integrals will be briefly described below, which is sufficient 

for this work.  Following the relation given by Eq. (6.18) of Kloeden and Platen (1991) 

and also Section 4.2.5 of Gardiner (1997), it can be shown that 
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where  is the Weiner increment in direction β, βW∆ βZ∆  is  the increment of the 

integrated Brownian process in direction β, and all variables are defined at t.  Note that 

 ∼ N(0, ∆) whereas ~ N (0, βW∆ βZ∆ 3
3
1 ∆ ) with ),( ββ WZCov ∆∆  = 2

2
1 ∆ .  The random 

number generation of  is simply carried out by the well-known Box-Mueller 

algorithm or other equivalent algorithms.  Once a random number of  is generated, 

that of  can be obtained by the following algorithm (Kloeden and Platen, 1989):  
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where 1ξ  and 2ξ  are independent N (0,1) random variables.   

For other integrals, they unfortunately do not have simple forms.  Nevertheless, it 

is still possible to alternatively express them in Fourier series forms (Kloeden and Platen, 

1991; Kloeden et al., 1992).  Moreover, the algorithms for generating random numbers of 

such integrals has not so far been enough developed particularly for multi-dimensional 

problems.  Gaines and Lyons (1994) proposed an advanced algorithm for the generation 

of  for 
21 , ββI 21 ββ ≠ .  However, the algorithm is somewhat complicated.  As for the 

moments of Ito integrals, the following product formula of two integrals can be used in 

their calculation (Li and Liu, 1997, Lemma 2.2):  
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where }{
~

Aδ  is the indicator function of statement A (equal to unity if A is true, otherwise 

0), µ~  and ρ~  are integer sequences of subscripts 1µ , 2µ , … , gµ   ∈ {0, 1, 2, 3, … } and  

1ρ , 2ρ , … , hρ   ∈ {0, 1, 2, 3, … }, respectively, with g and h ≥ 0, and )(~ −µ  and )(~ −ρ  

denote the new sequences resulting from deleting the last index of the original nonnull µ~  

and ρ~ , respectively.  For instance, 1)(0 ==− II , ∆==− 0)(1,0 II , and .  To 

illustrate how (6A.3) works, two examples are given.  First, consider 

4,1)(2,4,1 II =−

tII ℑ|0,33,1  (for 

the definition of , see Section 6.4).  Using Eq. (6A.3), it can be shown that tℑ
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From the mean value theorem (Gardiner, 1997, p. 90), the second term in Line [1] and 

every term in Line [3] equal zero.  Alternatively, the second term in Line [3] can be 

evaluated as follows: 
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The inner integrand on the RHS becomes zero because of I1 and I3 being independent.  

The second example is tI ℑ|4
1 .  Using Eq. (6A.3) and the mean value theorem, 
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Using 2
2
12

1,1 | ∆=ℑtI and 0|01,1 =ℑ tII , thus .3| 24
1 ∆=ℑtI  
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CHAPTER 7 

 

ANALOGY BETWEEN THE DIFFUSION LIMIT OF LAGRANGIAN STOCHASTIC 

MODELS OF TURBULENT DIFFUSION AND THE CLASSICAL THEORY OF 

TURBULENT DIFFUSION 

(Coauthor: A. G. Russell) 

 

Abstract  

This work presents a theoretical analogy between the diffusion limit of a general 

class of first-order Lagrangian stochastic models for one-dimensional nonstationary 

inhomogeneous turbulence and the classical theory of Taylor [Proc. Lond. Math. Soc. 20, 

196-211 (1921)].  The formalism of a projection method is adopted in performing the 

asymptotic analysis of such models within an equilibrium framework.  It is shown that 

the eddy diffusivity defined at the diffusion limit can be qualitatively interpreted as the 

area under the correlation function of velocity and that, at this limit, the differential 

operator of the Fokker-Planck equation corresponding to the model is asymptotically 

reduced to the so-called genuine differential operator.  Some caution of using the 

asymptotic results in practice is emphasized.  Verification is done by showing that the 

results obtained from the analysis can be recast into the form derived by the rigorous 

work of Thomson [J. Fluid Mech. 180, 529-556 (1987)].  In addition a particular class of 

first-order models whose drift coefficients are of a quadratic polynomial of velocity is 

revisited and more generalized.  Its asymptotic analysis is demonstrated using the 
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projection method and the known analytical forms of eigenfunctions of the generator in 

an Orstein-Uhlenbeck process.    

 

 

7.1. Introduction 

For many deterministic and stochastic systems, their evolution involves a large 

number of time scales and may be reduced asymptotically to systems of fewer degrees of 

freedom due to a large separation of time scales.  This is known to be the case of first-

order well-mixed Lagrangian stochastic models (LSMs) of passive-scalar single particles 

(shortly, particles) in large- Reynolds-number turbulence, in which the particle’s velocity 

is assumed to evolve continuously with time in a Markovian fashion.  As a result, the 

joint process of the particle’s displacement (z) and velocity (w) becomes Markovian.  For 

brevity, the particle’s velocity is shortened to just the velocity unless indicated otherwise.  

However, the evolution of z alone is in fact non-Markovian essentially due to its 

dependence on the initial condition of w and its noise being colored or nonwhite, i.e. the 

evolution of z always maintains the memory of the past from the beginning.   

Following the classical theory of diffusion in stationary homogeneous turbulence 

given by Taylor (1921), the eddy diffusivity at large times, denoted by KT, can be defined 

as the area under the curve of the correlation function of velocity versus positive time lag.  

According to the generalization of Durbin (1983, 1984) and Thomson (1987) for 

nonstationary inhomogeneous turbulence, a first-order LSM is asymptotically reduced to 

a zeroth-order LSM called a random displacement model (RDM) by mathematically 

taking the limit the local decorrelation time scale, τl, to zero in an RDM (i.e. τl → 0).  The 
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RDM is a model that represents the Markovian evolution of z alone, and its Fokker-

Planck equation (FPE) (or the effective FPE) becomes equivalent to an eddy diffusion 

model (EDM) of the mean concentration of a passive scalar. With this, a definition of 

eddy diffusivity is obtained and here denoted by KD.  However, both RDM and EDM are 

valid only if τl << τsh, where τsh is the local time scale of nonstationarity and 

inhomogeneity of turbulence, and theoretically approximate the behavior of the original 

first-order model only for times much larger than τl but not larger than τsh.  In other 

words, at any particular time t, both RDM and EDM are valid only when τl << τsh and 

approximate the first-order model only at t + ∆ for τl  << ∆ < τsh.  Since the asymptotic 

form corresponds to the EDM, the name “diffusion limit” is then used to refer to the limit 

at which the asymptotic forms of first-order models are defined, as said above.  Also, the 

names “Markov or white noise” limits are sometimes used since the evolution of z 

becomes Markovian and its colored noise turns white at this limit. 

In Thomson (1987), the formulation of first-order models of turbulent diffusion is 

rigorously established, and the asymptotic analysis of such models for multidimensional 

turbulence is also given in his Section 3.5 based on the method of singular perturbation.  

It is of main interest here to formally present a mathematical connection between the 

asymptotic forms of first-order models that are defined at the diffusion limit for 

nonstationary inhomogeneous turbulence and the classical Taylor theory through the 

concept of equilibrium treatment for a stochastic system.  Here, the formalism of 

projection method pioneered by Nakajima (1958), Zwanzig (1960), and Mori (1965) is 

adopted as an alternative technique in performing the asymptotic analysis. This technique 

takes into account much of the detail of a stochastic system, making it possible to solve 
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the FPE corresponding to the system directly.  Although its algebra seems rather 

complicated, its manipulation is convenient due to use of a projection operator (shortly, a 

projector). The analysis in this work is limited to one-dimensional incompressible 

nonstationary inhomogeneous turbulence.  Notwithstanding, it can provide some 

additional insight into the concept of eddy diffusivity defined at the diffusion limit. The 

analysis first deals with the stationary inhomogeneous case in the absence of a mean flow 

(to be referred hereafter as Case I) and is later extended to the nonstationary 

inhomogeneous case with a mean flow (to be referred hereafter as Case II).  To verify the 

results from the analysis, it is shown that the eddy diffusivity defined at the diffusion 

limit, denoted by KD, can be recast into the form derived by Thomson.  An emphasis of 

some limitations of the asymptotic solution of the model is also given.  As a supplement, 

this work demonstrates how the projection method can be readily applied to a particular 

class of first-order models whose drift coefficients are quadratic polynomials of w by 

taking advantage of standard Hermite polynomials.  For clarity, the RDM (or EDM), is 

strictly referred to as the model that is asymptotically reduced from a first-order LSM.  

As for the projection method, it has been employed in a broad range of research 

areas, particularly statistical mechanics, as a useful tool in constructing an approximate 

model for a stochastic system when some information or observation of the entire system 

is not available or can be neglected.  Examples of its applications to the subject of 

turbulent diffusion can be seen in Grossmann and Thomae (1982) and Heppe (1998).  For 

its fundamental theory and other applications, refer to Chaturvedi and Shibata (1979), 

Akhiezer and Glazman (1993 Chapter 3), and Gardiner (1997, Chapter 6).  In this study, 

 174



the formalism of projection method is to a large extent similar to Gardiner (1997) where a 

projector operates directly on a pdf of an FPE.   

  

 

7.2. Model Description 

In this section, the description of a first-order LSM is concisely given. For more 

details, they can be found in Thomson (1987), Rodean (1996), and Wilson and Sawford 

(1996).   The model necessarily complies with and the well-mixed condition (Thomson, 

1987) and the inertial subrange theory (Kolmogorov, 1941).  In essence, the model is 

formulated as a joint Markov process describing the evolution of (z, w) at time t, which is 

governed by the following system of stochastic differential equations (SDEs) of Ito type 

 

,dd twz =                   (7.1a) 

,ddd Wbtaw +=                                              (7.1b) 

 

where  is the drift coefficient, ),,( twzaa ≡ ),,( twzbb ≡  is the diffusion coefficient, and 

W is the standard Brownian motion at t.  When both a and b are independent of time, the 

above system is said to be autonomous.  It is known that the system in Eq. (7.1) is 

equivalent to a diffusion process governed by the FPE  
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where  is here defined as the unconditional pdf of (z, w) at t.  According to 

the well mixed condition, a takes the form  

),,( twzpp ≡

 

 ,)ln(
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1 2
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E p
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a φ
+
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=                               (7.3) 

 

where , is the pdf of the Eulerian velocity, wtzEEEEE wptzwpp ,)(),;( ≡≡ E, evaluated at 

location z and time t, “ln” denotes the natural logarithm, and ),,( twzφφ ≡  satisfies   
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Because wE equals w at any given z and t,  can be written as , and all 

statistics of w and w

tzEE wp ,)( tzE wp ,)(

E (at both z and t being fixed) are in fact equivalent.  Importantly, the 

integrability condition for p, pE, and φ requires  

 

.as 0and,, ∞→→ wpp
f.s.

E φ                                  (7.5) 

 

The abbreviation “s. f.” is used to indicate that each quantity on the left-hand side (LHS) 

of the condition in Eq. (7.5) decreases sufficiently fast to zero ∞→was   (i.e. at the 

boundary of phase space with respect to w).  To be consistent with the inertial subrange 

theory, b takes the form (Thomson, 1987; Wilson and Sawford, 1996) 
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where Co is the universal constant, ),( tzεε ≡  is the mean dissipation rate of turbulent 

kinetic energy, ),( tzll σσ ≡  is (loosely) defined as the local characteristic velocity scale 

of large eddies, and ),( tzll ττ ≡  is also (loosely) defined as the local characteristic time 

scale of energy-containing eddies (shortly, the local time scale).  Both σl and τl are 

positively valued.  Note that no strict rules apply to the value of the constant in the 

bracketed term of the second form in Eq. (7.6).  It is however required to be of O(1).  

Here, it is assigned to equal two, as in many works (see Degrazia and Anfossi, 1998, and 

references therein) where lσ  and lτ  are specified as the standard deviation of velocity 

and the local decorrelation time, respectively.  Also notice that, from Eq. (7.6), b is 

independent of w, i.e. .  Now, combine a and b above in Eq. (7.1) yields ),( tzbb ≡
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and the FPE in Eq. (7.2) can be rewritten into the form  

 

,21 pp
t
p LL +=
∂
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where L1 and L2 are the linear differential operators defined by 
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Now, consider Case I.  Since turbulence is stationary for this case, the system in 

Eq. (7.1) automatically becomes autonomous (i.e. the drift and diffusion coefficients of 

the system in question being independent of t).  So,  
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The symbol  is the ensemble average of a random variable, and the notation nw  

then denotes the nth moment of w for any positive integer n, i.e. ∫= wpww E
nn d .   

Because no mean flow is in this case and the incompressibility of a turbulent flow is 

assumed, w  and zw ∂∂ /  automatically become zero, respectively.   

For Case II, the system is non-autonomous with the drift and diffusion 

coefficients are dependent on t.  To facilitate the asymptotic analysis (as will be seen 

later), it is advantageous to convert the system to an autonomous version, which can be 
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done by introducing a new state variable τ (whose dimension is time).  Accordingly, Eq. 

(7.1) is equivalently rewritten as follows: 

  

,dd twz =                          (7.11a) 

,ddd Wbtaw +=                                            (7.11b) 

,dd t=τ                                                           (7.11c) 

 

where t is the true time variable.  The above system presents the joint stationary process 

of ),,( τwz  instead of  and also becomes autonomous.  Accordingly, ),( wz
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Since turbulence in this case has no mean flow and is incompressible, w  is now 

nonzero while zw ∂∂ /  is still zero.  The FPE corresponding to the above system is  
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where ),,,( tzwpp τ≡  is the unconditional pdf of (z, w, τ) at t.  The coefficients a and b 

here still take the same forms as in Eqs. (7.3) and (7.6), respectively, but φ now satisfies 
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Similar to Eq. (7.8), Eq. (7.13) can be recast into the form 
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where L1, L2, and L3 are defined by  
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For clarity, the integral sign ∫ is used to denote the integration over the phase space with 

respect to w (here, from −∞ to ∞) while the integral sign indicates that the integral 

is only symbolically evaluated with respect to w.  For example, . 

∫symb

∫ =
symb

www 2/d 2

 

 

7.3. Projection Method 

As mentioned in Section 7.1, given there exists τl << τsh, the diffusion limit of the 

system in question can be mathematically obtained and facilitated by simply imposing τl 
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→ 0.  As a result, a large separation between the time scales of two pdfs of w and z takes 

place, allowing the formalism of projection method to be applied, as will be seen later.    

 

7.3.1. Case I 

To begin, let  denote the conditional pdf of w at t given z at the 

same t and  denote the unconditional pdf of z at t (i.e. 

zzw twpp ),(| ≡

),( tzpp z ≡ ∫= wppz d ).  

According to the chain rule of probability, it is straightforward to write p in Eq. (7.8) as  

 

.| zzw ppp =                                          (7.17) 

 

With τl being very small, it is anticipated that  and pzwp | z will evolve over much different 

time scales.  To clarify this, arrange Eq. (7.8) using Eq. (7.17) to give 
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The magnitude of the first term on the right-hand side (RHS) in the first line of Eq. (7.19) 

is inversely proportional to τl and considerably large.  The other terms are thus neglected 

as τl → 0.  Moreover, when τl becomes smaller,  is less varying with t.  The reasons 

for this are that all eigenvalues of the operator L

zwp |

1 are nonnegative, and their magnitudes 
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are inversely proportional to τl (see Appendix 7B).  So, it can be said that  

approaches a stationary state as τ

zwp |

l → 0.  In other words, szw pp ≈| , where  is 

the stationary pdf of w at z being fixed.  This corollary suggests that the velocity variable 

w is able to adjust rapidly to the instantaneous values of x.  So, z is often called the slow 

variable for the system while w is the fast variable.  Eq. (7.19) is then reduced to just 

zss wpp )(≡

 

.0 1 spL≈                                                      (7.20) 

 

The solution to the above equation can be uniquely determined given the well-mixed 

condition and the normalization condition of ps (i.e. ∫ =1dwps ).  That is, ps = pE.   Hence, 

 

.
0

zE ppp
l →

≈
τ

                    (7.21) 

 

 

7.3.2. Case II 

Similar to Case I, let ττ ,,| ),( zzw twpp ≡  denote the conditional pdf of w at t given 

(z, τ) at the same t and ),,(, tzpp z ττ ≡  denote the unconditional pdf of (z, τ) at t , i.e. 

, where ∫= wppz d,τ ),,,( twzpp τ≡ .  From the chain rule of probability,  

 

.,,| ττ zzw ppp =                                   (7.22) 
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It is anticipated again that  and  will evolve over much different time scales 

when τ

τ,| zwp τ,zp

l is very small.  With the similar arguments for Case I, it can be said that as τl → 0, 

 approaches a stationary state.  Thus, τ,| zwp ,,| szw pp ≈τ  where  is the 

stationary pdf of w at (z, τ) being fixed.  Consequently,  

τ,)( zss wpp ≡

 

.0 1 spL≈                                                      (7.23) 

 

The solution to the above equation can be uniquely determined given the well-mixed 

condition and the normalization condition of ps (i.e. ∫ =1dwps ).  That is,  ps = pE.   Hence, 

 

.,

0

τ

τ

zE ppp
l →

≈                             (7.24)

 

 

7.3.3. Projection operator 

In the projection method, the RHS terms of Eqs. (7.21) and (7.24) can be written 

as Pp, where P is the projector linearly operating on p.  Similarly, for an arbitrary real-

valued function f ≡ f(w, .) (where the dot represents the other variables) whose behavior 

as ∞→w  is assumed to be the same as that of p in Section 7.2, its projection can be 

defined by 

 

.d∫= wfpf EP                     (7.25) 
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Formally speaking, the projector P maps f in H into its projection onto a subspace of H, 

where H is in general a Hilbert space.  Furthermore, define the complement of P as  

 

,)( fff PP1 −=−                  (7.26) 

 

where  is conventionally called the complement operator of P, and 1 is the 

identity operator.  Following these definitions, both P and 

)( P1−

)( P1−  are linear operators 

and hold the properties below:  
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−=−−≡−

=≡

PP1P1P
1P1P

P1P1P1P1
PPPP

               (7.27) 

 

As in Gardiner (1997, p. 199), P may be expressed in terms of L1 as follows:     

 

,lim 1LP θ

θ
e

∞→
=                   (7.28) 

 

where  is called the exponential operator (or the propagator) with respect to L1Lθe 1, and θ 

is a variable whose dimension is time   Due to the importance of Eq. (7.28), its 

justification is given in Appendix 7B.  One property of the exponential operator is that its 

operational integration can be carried out in a similar manner to a typical integration.  

Thus,  
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LL L θ
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θ θ ee −−=′ −′∫                 (7.29) 

 

where  is the inverse operator of L1
1
−L 1 with the identity .  Using Eq. 

(7.29), it follows that  

1LLLL == −−
1

1
1

1
11

 

                  (7.30) .(.))(d(.) 1
1

0

1 P1LL −−= −
∞

∫ θθe

 

To solve Eqs. (7.9) and (7.15), a one-sided Laplace transform Lp and its inverse transform 

 are employed, with the identity .  By definition, the Laplace transform of a 

function f, 

1−
pL 1LL =−

pp
1

.),(~ sf , is 

   

                                            (7.31) ,d~

0

tfeff st
p ∫

∞
−=≡L

 

where s is a variable whose dimension is time−1.  It can be also seen that  as 0~ .. fs

f →

∞→w .  Note again that  “s. f.” is used to indicate that the LHS term decreases 

sufficiently fast to zero ∞→was  that its integral over (−∞, ∞) with respect to w is 

defined or bounded.  Some properties related to the above operators are given below:  

 

Case I:      

 185



.0(c)
and,0)(b

,0)(a

2

1

1

=
=
=

PPL
PL

PL
                                          (7.32) 

 

The proof of (c) above is given in Appendix 7A whereas (a) and (b) are straightforward.  

It is not difficult to verify that both Lp and  commute with P, , L1−
pL )( P1− 1 and L2. The 

commutative property also holds for  and , i.e.  

.  For conciseness, [Op

1−
pL )(1

1 P1L −− =−−− )(1
1

1 P1LLp

11
1 )( −− − pLP1L 1, Op2] denotes that operators Op1 and Op2 commute.  

 

Case II:     
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In addition, both Lp and  commute with P, 1−
pL )( P1− , L1 and L2 (but not with L3).  Also, 

 and  commute with each other, i.e. . 1−
pL )(1

1 P1L −− 11
1

1
1

1 )()( −−−− −=− pp LP1LP1LL

 

 

7.4. Asymptotic Analysis 

 The asymptotic analysis is performed in this section, beginning with Case I and 

then Case II.  In general, the analytical procedures for both cases are quite similar and 

consist mainly of these following steps: First, apply the projector P on the FPE relevant 
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to each case.  Second, apply the complement operator (1 − P) on the same FPE.  Third, 

Laplace transform on both equations obtained from the first two steps. Fourth, couple the 

resulting equations together.  Last, determine the effective FPE. 

 

7.4.1. Case I 

First, apply the projector P and its complement )( P1 − to Eq. (7.8), and use 

properties given in Eq. (7.32).  After some arrangement, obtain  
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Next, let  and ),,(11 twzvv ≡ ),,(22 twzvv ≡  denote Pp and )( P1− p, respectively.  So,  

 

and,: 22
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t
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p
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respectively.  Next, Laplace transforms are applied to the above equations, yielding 
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and,~)0.,(~
2211 vvvs PL=−                     (7.38) 

.~~)(~)0.,(~
12222122 vvvvvs LLP1L +−+=−                     (7.39) 

 

Without of loss of generality, let  equal zero.   Next, arrange Eq. (7.39) for the 

expression of 

)0.,(2v

2
~v , and insert it into the RHS term of Eq. (7.38).  By doing so, 

 

[ ] .~)()0(.,~
12

1
21211 vsvvs LLP1LPL −−−−=−                      (7.40) 

 

To order of τl (i.e. O(τl)), only the second term in the brackets [ ]−1 remains.  So, Eq. 

(7.40) is reduced to just 

 

.~)0(.,~
12

1
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Using (c) in Eq. (7.32) and the commutative property of [Lp, )( P1− ] and [Lp, L2],  
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1
1211 vvvs LP1LPL −−=− −                             (7.42) 

 

Applying inverse Laplace transforms to both sides yields   

   

.)( 2
1
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∂
∂ −                 (7.43) 
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One can see that the above equation presents the intermediately reduced form of Eq. 

(7.8).  In search for the final or asymptotic form, more work needs to be done.  To do so, 

using Eqs. (7.9) and (7.25), Eq. (7.43) becomes 
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The evaluation of Terms (I) and (II) is given in Appendix 7C, showing that Term (II) is 

zero. So, only Term (I) remains.  With  on each side taken out,   Ep
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                         (7.45) 

 

The effective FPE of the system for Case I is finally obtained as shown above.  Notice 

that the underlined term has the dimension of diffusivity (i.e. length2 time−1).  Thus, 

define this term as the eddy diffusivity at the diffusion limit, denoted by )(zKK DD ≡ .  

Due to the fact that the mean concentration of a passive scalar, denoted by , is 

always linearly proportional to p

),( tzCC ≡

z, the effective FPE in Eq. (7.45) is thus equivalent to the 

EDM of the mean concentration of a passive scalar  
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 189



 

For the SDE or RDM equivalent to the effective FPE in Eq. (7.45),   

 

,d)2(dd 2/1 WKt
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Kz D
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=                                        (7.47) 

 

where  and  are the corresponding drift and diffusion coefficients, 

respectively.  For the definition of K

zK D ∂∂ / 2/1)2( DK

D in Eq. (7.45), it is discussed in detail in Section 7.5.  

 

7.4.2. Case II 

In much of the following, the procedures are parallel to those in Case I in a step-

by-step manner.  Thus, only those that are important will be shown.  To begin with, apply 

P and  to Eq. (7.15), and use properties in Eq. (7.32).  After some algebra, obtain  )( P1−
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 Again, use ),,,(11 twzvv τ≡  for Pp and ),,,(22 twzvv τ≡  for )( P1− p.  Then, 
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respectively.  Applying Laplace transforms to the above equations gives 
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Without loss of generality,  is assumed to equal zero.  Then, obtain the expression 

of 

)0.,(2v

2
~v  from Eq. (7.53), insert it into the second term on the RHS of Eq. (7.52), and 

rearrange all terms.   After doing so, 
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To a close approximation of O(τl), Eq. (7.54) is reduced to just 
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Next, apply inverse Laplace transforms to both sides, resulting in 
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According to Appendix 7D, Term (II) is zero.  By incorporating Term (I) evaluated in Eq. 

(7D.1) and taking out  on each side, the above equation becomes Ep
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The last step is to convert  to  through reversing the same procedures carried out 

previously in Eqs. (7.11)-(7.13).  That is, the variable τ is eliminated from , and any 

τ-dependent variables or functions automatically become t-dependent instead.  By doing 

so, the effective FPE is 
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where .  As before, define the underlined term as the eddy diffusivity at the 

diffusion limit .  Since p

),( tzpp zz ≡

),( tzKK DD ≡ z is interchangeable with the mean concentration 

of a passive scalar , the effective FPE in Eq. (7.58) is equivalent to the EDM ),( tzCC ≡
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 Therefore, the corresponding SDE or RDM is  
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So far, the asymptotic analysis of the general class of first-order models that meet 

the inertial subrange theory and the well-mixed condition has been completely 

performed.  In the next section, the results in this section will be discussed.  

 

 

7.5. Discussion 

7.5.1. Analogy the eddy diffusivity at the diffusion limit 

As mentioned in Section 7.1, the classical Taylor theory for stationary 

homogeneous turbulence states that the eddy diffusivity at large times (KT) can be defined 

as the area under the curve of correlation function of velocity versus positive time lag, i.e.  
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where R is the Lagrangian velocity autocovariance and ξ is the positive time lag.  When 

turbulence is characterized by nonstationarity and/or inhomogeneity, the diffusion limit is 

not defined at large times but instead at local times.  Nevertheless, it is still possible to 

interpret the eddy diffusivity at the diffusion limit in spirit of Taylor, as described below.      

First, consider Case I.  It is natural that the significance of KD defined in Eq. 

(7.45) can be directly found by deeming the term  as the solution to the 

Liouville equation (B1) (see Appendix 7B) where

)(1
Ewpe Lθ

),,( θwzff ≡  with the initial condition 

.  With this, it is straightforward to write Ewpwzf =)0,,(
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where zwwp )0,|,(
11 ′− θL  (shortly, ) is defined as the solution to the following 

Liouville equation 
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subject to the initial condition  
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,)()0,|0,(
11 wwwwp z ′−=′− δL                  (7.64) 

 

where (.)δ  is the Dirac delta function. Note that the subscript z indicates “evaluated at z 

being fixed”, and the subscript L1 is to emphasize that L1 is the only generator driving the 

evolution of w along the time coordinate θ.  Using Eq. (7.62), KD in Eq. (7.45) can be 

expressed as 
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The knowledge of is required to calculate K
11 L−p D above, and it depends solely on L1 and 

pE, as seen in Eq. (7.65).  To the authors’ knowledge, there is no general analytical form 

of  available.  There is however a simpler way to evaluate K
11|1 L−p D than using Eq. (7.65) 

(i.e. without a need to determine ), as will be seen in Section 7.5.2.  To further the 

discussion, one can see without difficulty that, according to the chain rule and the fact 

that τ

11|1 L−p

l → 0, the product of zE wp )( ′  and zwwp )0,|,(
11 ′− θL  equals the joint pdf of w at θ 

and  at θ = 0 (both at z being fixed) that is governed by the Liouville equation with the 

generator L

w′

1.  Let this joint pdf be denoted by zwwpp )0,;,(
11 22 ′≡ −− θLL .  Then, 

.  Therefore, Eq. (7.65) becomes 
11 12 LL −− = ppp E
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Once the variable θ is thought of as a time lag variable, the main integrand (square-

bracketed) can be interpreted as the Lagrangian velocity autocorrelation function of 

velocity.  Thus, the definition of KD is in fact the area under the curve of correlation 

function versus positive time lag, which is essentially analogous to KT in Eq. (7.61).  It 

should be noted that although θ is not the true time lag theoretically, it can be thought so 

given that the evolution is being fixed at z and only the genuine generator L1 plays a role 

in the evolution of w. 

Likewise, for Case II, it is straightforward to write 
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Thus, KD in Eq. (7.58) can be rewritten by 
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where the subsripts z and t indicate “evaluated at z and t being fixed”.  According to Eq. 

(7.68), KD for this case can also be defined as the area under the curve of the correlation 

function for the evolution of w at both z and t being fixed and L1 being the genuine 

generator of the evolution.  Also notice that only the fluctuating or turbulent component 

of velocity (i.e. ww − ) is taken into account, suggesting that the eddy diffusivity at the 
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diffusion limit implies the ability of diffusion only through the fluctuating component of 

velocity in one-dimensional incompressible turbulence.    

It is also of importance to briefly discuss some important aspects related to the 

validity and accuracy of the RDM (or EDM) asymptotically reduced from a first-order 

model.  The focus is on turbulence with significant nonstationarity and/or inhomogeneity.  

Using an RDM in numerical implementation often offers simplicity, resulting in an 

enormous decrease in computational demand. Nevertheless, one should be aware that the 

constraint τl << τsh, is necessarily required for its validity.  However, a number of 

research works in the past have overlooked this requirement, applying RDMs directly 

without validating them.  Thus, checking the constraint should be emphasized and 

encouraged so that the validity of the RDM is guaranteed for use.  From the analysis here, 

the constraint can be seen at Eqs. (7.66) and (7.68) that the eddy diffusivity at the 

diffusion limit depends only on the pdf  that is locally defined in time and location, 

suggesting that any change in the magnitudes of any turbulence variables essential to the 

evolution should be small.  Examples of such turbulence variables that can be considered 

are those that define the deterministic field of a turbulent flow, such as σ

12 L−p

l, τl, ε , nw , 

etc.  In practice, τsh can be defined as τsh = min [Ts( ), T)(iψ h( ), for  i = 1, 2, 3, …], 

where T

)(iψ

s( ) and T)(iψ h( ) are the local time scales of nonstationarty and 

inhomogeneity, respectively, with respect to the i

)(iψ

th turbulence variable (denoted by ).  

A stronger version for τ

)(iψ

sh can also be given by τsh =  for all i.  

Although defining T

1)(1)(1 ])()([min −−− + i
h

i
s TT ψψ

s and Th may not be straightforward or exact, one tentative way is 

resort to the time scale of the tangent of a variable, i.e. for ,    )(iψ
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where σ = 
2/12w .  Given that the above constraint is satisfied, it is possible to say that 

the accuracy of the RDM in numerical simulations will simply rely on the magnitude of 

τl.  That is, the smaller τl, the more accurate.  As said in Section 7.1, given the process 

stays at present time t, the RDM approximates the first-order model only at t + ∆ for τl << 

∆, meaning that the first-order model needs a large separation between τl and ∆ to relax 

itself to the RDM (i.e. the pdf p is allowed to be well represented by Pp).  Therefore, 

implementation of the RDM at a local instant always causes an error due to the fact that 

the relaxation is not attained, generally giving an overestimate of the growth of local 

mean squared displacement.   

 

 

7.5.2. Verification 

To verify the results obtained from the analysis in this work, it is anticipated that 

the results can be consistently recast to the form given by Thomson.  For conciseness, 

only Case II is demonstrated.  To do so, reconsider the Liouville equation (B1) for 

),,,( θtwzff ≡  with the initial condition Epwwtwzf )()0,,,( −= . Similar to the 
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procedures done in Eq. (7C.1) substituting ( )Epwwe )(1 −Lθ  for f and integrating both 

sides of Eq. (7B.1) over θ from 0 to ∞ yield 
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with the requirement of the boundedness condition 
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Note that the RHS of Eq. (7.70) uses: f = Epww )( −  at θ = 0 and f = P[ Epww )( − ] = 

0 as θ → ∞.  Let denote the term ),,( twzHH ≡ ( θθ d)(
0

1∫
∞

− Epwwe L ) .  After some 

algebra on Eq. (7.70), it can be shown that 
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So, KD in Eq. (7.58) can be rearranged to give 
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where ∫
∞−

′−′=≡
w

E wpwwtwzqq d)(),,( .  As seen, the result in Line [4] provides a 

much more convenient way for calculating KD.  Due to the linear relationship between b2 

and  (see Eq. (7.6)), the result above can be readily rewritten as follows: 1−
lτ
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which is the form given by Thomson.  Note that the functions G and φo appeared in 

Section 3.5 of his work equals −H and necessarily zero, respectively, in this work.  As for 

the condition in Eq. (7.71) above, it is anticipated to hold for any pE decreasing 

sufficiently fast (especially, exponentially fast) to zero as ∞→w .  Examples of such 

pE’s in the literature are Gaussian, Chi-type (Thomson, 1987), bi-Gaussian (Baerentsen 

and Berkowicz, 1984; Luhar and Britter, 1989), and Chi-type: Gram–Charlier expansion 

(Maurizi and Tampieri, 1999).     
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7.6. Supplement 

According to the fact that there is no guarantee that a first-order model that 

asymptotically reduces to an EDM will satisfy the well-mixed condition (Thomson, 

1987), Rodean (1996) which studied the asymptotic reduction of two different first-order 

models whose drift coefficients are of a quadratic polynomial of velocity w in his Section 

6.3.  Two models are Legg and Raupach (1982) and Wilson et al. (1981) that are among 

the pioneering models proposed for the diffusion in stationary inhomogeneous Gaussian 

turbulence.  Note that only the latter model is valid due to its obeying the well-mixed 

condition.  It was found that both models reduce to an EDM and share the same RDM.  

However, Rodean’s discussion and analysis is not based on the equilibrium concept.  It is 

thus of interest here to demonstrate how to asymptotically reduce such quadratic models 

within the equilibrium framework by the projection method.  As will be seen later, these 

models have the genuine generator similar to the generator of an Orstein-Uhlenbeck (OU) 

process, which enables the analysis to be carried out in a simple manner using the 

knowledge that each eigenfunction of the OU generator takes the form of a standard 

Hermite polynomial. 

Here, consider a stationary process governed by the first-order quadratic model 

whose form (regardless of the well-mixed condition) is  
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where )(00 zββ ≡ , )(11 zββ ≡ , and )(22 zββ ≡ are functions with the dimensions of 

length⋅time−2, time−1, and length−1, respectively, and are assumed to be independent of τl.   

For simplicity, assume that there is no mean flow (i.e. w  = 0).  With Eq. (7.75), the 

Legg and Raupach model corresponds to β0 = , βzl ∂∂ /2σ 1 = 0, and β2 = 0 while the 

Wilson et al. model corresponds to β0 = ) , β/()2/1( 2 zl ∂∂σ 1 = 0, and β2 = 

, where )/()2( 212 zll ∂∂− σσ lσ  is estimated as 
2/12w .   To perform the asymptotic 

analysis of the model in Eq. (7.75) (coupled with the displacement equation twz dd = ), 

the FPE of this coupled system is 
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where L1 and L2 are defined by 
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It is straightforward to deduce the stationary pdf of w at z being fixed (denoted 

by ) from (76) because the form of Lzss wpp )(≡ 1 appears similar to that of the generator 

of an OU process whose stationary pdf simply takes the Gaussian form 
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Moreover, all eigenfunctions s'λϕ corresponding to the eigenequation λλ λϕϕ −=1L  can 

be analytically determined. Without loss of generality, let a nonnegative integer-valued 

variable n be used for λ.   In other words, λϕ  is replaced by nϕ .  Thus, it follows that 
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for n ≠ 0, where  is the inverse operator of L1
1
−L 1.  As in Gardiner (1997, p. 202) and 

Risken (1996, p. 192-193), nϕ  takes the following form 
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where n! is the n-factorial, and Hn(.) is the Hermite polynomial for n = 0, 1, 2, 3, … , e.g.  
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As for the properties related to P, L1, and L2 for this current case, one can find that: 
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In addition, both of the Laplace transform operator Lp and its inverse operator  

commute with P, , L

1−
pL

)( P1− 1 and L2.  Also,  and  commute while  and 

L
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pL )(1

1 P1L −− 1
1
−L

2 do not.  Now, carry out the same procedures as done in Section 7.4.1.  By doing so, 

the effective FPE asymptotically reduced from the model in question is 
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Using Eqs. (7.77), (7.79), and (7.81), it is found that   
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Now, incorporate the above result in Terms (I) and (II) in Eq. (7.83).   Then,  
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Then, Eq. (7.83) is finally reduced to 
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which is equivalent to the SDE or RDM 
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So, any β0 and β2 that meet 
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will make the effective FPE equivalent to the EDM, regardless of β1.  Therefore, there are 

infinite combinations of β0, β1, and β2 that enable the model in question to asymptotically 

reduce to the EDM.  It is readily seen that the forms of β0 and β2 in the Legg and Raupach 

model and Wilson et al. model satisfy Eq. (7.88), yielding the same RDM.  
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Appendix 7A. Evaluation of  PL2P in Eq. (7.32) 

Using Eqs. (7.9) and (7.25), PL2P can be evaluated as follows: 
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Using the condition in Eq. (7.5), the last term in the squared-bracketed term in Line [3] is 

zero.  Due to no mean flow in Case I (i.e. w  = 0), PL2P = 0. 

 

 

Appendix 7B. Justification of Eq. (7.28) 

In much of the following, the justification makes use of several concepts in 

Risken (1996, p. 103-105) and Gardiner (1997, p. 130-131).  The details are given in a 

step-by-step but concise manner.  To begin with, define .),,( θwff ≡  as an arbitrary 

function that decreases sufficiently fast as ∞→w , where θ is a variable with the 

dimension of time as usual.  Then, consider the parabolic partial differential equation  

 

,1 ff L=
∂
∂
θ

                    (7B.1) 

 

where L1 is the differential operator defined in Eq. (7.10).  As a Liouville equation, its 

solution can be written as  where or f,or.),0,( 11
ofewfef LL θθ= .),0,(wf o is the initial 

condition at θ = 0.  Often, it is advantageous to present f as a linear combination of its 

eigenfunctions.  To do so, suppose that fλ is a solution of Eq. (7B.1) and takes the ansatz 

(i.e. separable) form  

 

,λθ
λλ ϕ −= ef                     (7B.2) 
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where .),(wλλ ϕϕ ≡ , and λ is a parameter that is independent of w and has the dimension 

of time−1.  Substitution of  for f in Eq. (7B.1) gives  λf

 

,1 λλ λϕϕ −=L                            (7B.3) 

 

which is the eigenequation of the operator L1 with ϕλ and λ being its eigenfunction and 

eigenvalue, respectively.  It is simple that, for λ = 0, ϕ0 = , where hpE .),(θhh ≡  is a w-

independent function whose value is given to be unity for simplicity. So,ϕ0 = pE.  

According to the Sturm-Liouville theory (O’Neil, 1995, p. 218-227], λ is real-valued, and 

the orthonormality of eigenfunctions holds, i.e.  

 

,d ,λλλλ δϕϕ ′′ =∫ wq                        (7B.4) 

 

 where  is an appropriate weighting function, and .),(wqq ≡ λλδ ′,  is the Kronecker 

function that equals unity for λ = λ′, otherwise zero.  Hence, it is straightforward to write 

.  Moreover, it can be shown that λ is always nonnegative.  To prove this, a new 

variable  is introduced and defined as follows: 

1−= Epq
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With this definition, the relation between L1 and Φ  can be given by 
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Also, introduce a Hermitian operator LH with the following definition 
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Additionally, let ),,( twzλλ ψψ ≡  denote .   So,  in (B2) can be rewritten as λϕ
2/Φe λf
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Incorporating Eqs. (7B.7) and (7B.8) in Eq. (7B.1) results in 
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It should be noted that λλλ ψϕ and,,f
f.s.

→  0 as ∞→w .  As noted in passing, λ is 

nonnegative, which can be verified through using Eqs. (7B.7) and (7B.9) in evaluating 

the term .  After some algebra, it can be shown that wH dλλ ψψ L∫
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Since π2 > 0, comparison between the second and third terms gives λ ≥ 0.  Due to the fact 

that { λϕ } forms an orthogonal set, the eigenfunction expansion of f may be written by  
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where aλ is the expansion coefficient that can be expressed by                         

Therefore, it is straightforward to write: 
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Without loss of generality, f0 in Lines [1] and [4] can be replaced with f, and the 

justification is complete.   

 

 

Appendix 7C. Terms (I) and (II) in Eq. (7.44) 

 Using Eqs. (7.10) and (7.28)-(7.30), Term (I) can be arranged to give 
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From Lines [3] to [4], use Eq. (7.4).  From Lines [4] to [5], use (3.18).  Note that, in Line 

[5],  can be taken out of .  zpz ∂∂ / (.)1Lθe

 Likewise, (II) can finally be written as follows: 
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Intuitively, the term in the square brackets on the RHS is expected to be bounded over the 

entire range of w and to vanish sufficiently fast as ∞→w .  Despite the condition 

∞→→ w
fs

as0
..

φ , it is still unclear about the value of this square-bracketed term at 

these limits.  With this, it is necessary to make an additional assumption concerning its 
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boundedness behavior.  To do so, reconsider (B1) for f ) .  Integration on both 

sides of (B1) over θ from 0 to ∞ results in 
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Note that f = wpE at θ = 0 while f = P(wpE) = 0 as θ → ∞.  Once it is assumed that  
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it is possible to write 
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For any pE decreasing sufficiently fast as ∞→w , the assumption of the condition in 

Eq. (7C.4) appears appropriate.  Thus, Term (II) equals zero. 

 

 

Appendix 7D. Terms (I) and (II) in Eq. (7.56) 

Similar to Eq. (7C.1), Term (I) in Eq. (7.56) can be arranged to give 
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 For Term (II), the arguments made for Term (II) in Appendix 7C are applied in a 

similar manner. However, the only differences are that pE and φ are now explicit 

functions of τ and that is replaced by )(1
Ewpe Lθ ( )Epwwe )(1 −Lθ  instead. By 

induction, for any pE decreasing fast to zero as ∞→w , Term (II) equals zero. 
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CHAPTER 8 

 

EVALUATION OF SOME PROPOSED FORMS OF LAGRANGIAN 

VELOCITY CORRELATION  

(K. Manomaiphiboon and A. G. Russell, Inter. J. Heat Fluid Fl., 24 (2003), 709-712) 

 

Abstract 

This work evaluates four different forms of Lagrangian velocity correlation 

coefficient for stationary homogeneous turbulence at very large Reynolds numbers 

through consideration of simple mathematical and physical requirements.  It is shown 

that some of them do not comply well with the requirements and may not be appropriate 

for use.  

 

 

8.1. Introduction 

 One of the most fundamental statistics of a turbulent flow is the Lagrangian 

velocity correlation coefficient (shortly, correlation coefficient).  In stationary 

homogeneous turbulence, its definition is given by  

 

,
)()(

)(
2u
tutu

RL

τ
τ

+
=             (8.1) 
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where RL is the correlation coefficient, τ is the time lag,  u(t) is the Lagrangian velocity of 

a fluid element at time t, and 〈 〉 denotes an ensemble average (that is equivalent to a time 

average for stationary turbulence) of a quantity.  The objective of this work is to evaluate 

four different forms of RL proposed in the literature for stationary homogeneous 

turbulence at very large Reynolds numbers through consideration of essential 

mathematical and physical requirements.  The first is the classical exponential form given 

by Taylor (1921).  This form has been discussed to a large extent in Tennekes (1979).  It 

is included here for comparison.  The others are two forms given by Frenkiel (1953) and 

a recent proposal of Altinsoy and Tuğrul (2002).  Their expressions are given in the next 

section.  It is important that a proper form of RL should comply with the following 

requirements:    

I:  RL is even around the origin τ = 0 with )(τLR  ≤ 1 = .  Also, it vanishes 

fast as 

)0(LR

∞→τ  such that its integral over τ holds, i.e. 0)(lim =
∞→

τ
τ LR and 

∞<∫
∞

ττ d)(
0

LR .   

II: RL is smooth over τ.  At the origin, 0d/d =τLR  and . 0d/d 22 <τLR

III:  As a result, the Lagrangian integral time scale TL, defined by 

 

,d)(
0

ττ∫
∞

= LL RT                      (8.2) 

 

is bounded or well-defined. 
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IV: In addition, let EL denote the Lagrangian turbulent energy spectrum.  

Mathematically, RL and EL can be expressed as the Fourier transform pairs: 

 

and,d)cos()(1)(
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2 ∫
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= ωωτωτ LL E
u

R       (8.3)

 ,d)cos()(
2
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0

2

∫
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= τωττ
π

ω LL R
u

E                   (8.4) 

 

where ω is the turbulence frequency.  The Fourier cosine transforms are used in 

the above relations due to the evenness of both RL and EL.  According to the 

inertial subrange theory (K41) (Kolmogorov, 1941), EL can be expressed by 

 

)(or)( 22 −− ∝= ωωεω kEL                  (8.5) 

 

for 1 << ωTL  << TL /τη, where k is the dimensionless universal constant, ε  is the 

mean turbulent energy dissipation rate, and τη is the Kolmogorov time scale that is 

small for large Reynolds numbers.   

For convenience, the above requirements will be referred hereafter to as Reqs. I-IV, 

respectively.  For more detailed description of these requirements, see Tennekes and 

Lumley (1972, Chapter 6), Hinze (1975, Chapter 1), and Pope (2000, Chapter 6).  Note 

that Reqs. I and II are equivalent to the five conditions in Hinze (1975, p. 59-60).  For 

this work, the underlying framework is very large-Reynolds-number turbulence, in which 
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K41 theory applies.  Discussion of the effects of Reynolds number on RL can be found in 

the rigorous work of Sawford (1991). 

 

 

8.2. Forms of RL

 Four forms of RL are considered here.  The first form is given by Taylor (1921) as 

follows: 
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The second and third forms are from Frenkiel (1953):  
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For the last form, Altinsoy and Tuğrul (2002) recently proposed  
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and also presented a general set for Eqs. (8.8) and (8.9) as  
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for m > 0, where m is called the loop parameter.  Notice that Eq. (8.10) reduces to Eqs. 

(8.8) and (8.9) for m = 0 and 1, respectively.  Altinsoy and Tuğrul investigated the 

performance of RL in Eq. (8.10) with m = 1, 2, and 3 and used m = 1 as the proposed 

value.  For conciseness, the forms by Eqs. (8.6)-(8.9) will be referred to as T, F1, F2, and 

AT, respectively.  Their plots are shown in Figure 8-1. 

 

 

8.3. Evaluation and Discussion 

 To begin with, consider Req. I.  It is not difficult to see that each form is even and 

its magnitude equals unity at τ = 0 but less than unity for 0>τ .  Furthermore, each is 

continuous and decreases exponentially fast to zero as ∞→τ .  So, all forms satisfy this 

requirement.   

For Req. II, it is straightforward that F2 and AT satisfy the requirement while T 

and F1 do not because their first- and second-order derivatives (with respect to τ) are not 

defined at the origin.  In addition, it should be noted that this requirement is also directly 

associated with another mathematical constraint that the Lagrangian acceleration 

correlation coefficient (denoted by ) has no integral time (Tennekes and Lumley, 

1972, p. 215-216; Hinze, 1975, p. 398), i.e.  

aLR ,
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Figure 8-1. Velocity correlation coefficient versus time lag 
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where a is the Lagrangian acceleration of a fluid element.  Because T and F1 fail to meet 

this requirement, the above constraint cannot be met.  However, these drawbacks are not 

serious due to the fact that lack of smoothness of RL at the origin suggests no correct 

viscous description for an energy spectrum.  Since the viscous region only spans very 

high frequencies for very-large-Reynolds-number turbulence, it contains very low total 

energy, which is not significant in the context of turbulent diffusion (Tennekes, 1979).    

 Req. III is in fact nothing but the definition of TL.  Nevertheless, it is important to 

ensure that this definition indeed holds.  By direct integration, it is straightforward to say 

that T, F1, and F2 meet the requirement.  For AT, its integration is somewhat 

complicated but can be done using Eq. (8A.2) in Appendix.  It is found that AT cannot 

produce the correct result (i.e. the integration of RL over τ from 0 to ∞ does not yield TL).  

In fact, the set given by Eq. (8.10) fails to meet the requirement for all m > 0, except for 

m ≈ 1.0056.  That is, the integral is less than TL for 0 < m < 1.0056 (approx.) and more 

than TL for m > 1.0056 (approx.).  For AT, the integral equals 0.9996TL (approx).  Thus, 

AT is invalid due to TL being ill defined.  

To check the compliance with Req. IV, first determine the expression of EL 

corresponding to each RL form using Eq. (8.4).  After some algebra with help of the 

formulas in Appendix, obtain: 
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Figure 8-2 shows EL calculated from the above relations.  Based on K41 theory, it is 

anticipated that EL exhibits linear proportionality to  for ωT2−ω L >> 1.  It is seen from 

Figure 8-2a that T and F1 can capture the ω -2 falloff.  The energy spectra of AT and F2 

are similar and do not have the  falloff, as shown in Figure 8-2b.  Note that Figure 8-

2b uses log-linear scale instead in plotting because the energy spectrum of AT becomes 

negative for some frequencies, which violates the non-negativity of the Fourier transform 

of an autocorrelation coefficient (Bracewell, 2000, p. 122).  Hence, only T and F1 agree 

with K41 theory.  

2−ω

From the above discussion, it is fair to say that T and F1 are appropriate for use 

because both comply well with most of the requirements.  Although they are not smooth 

at the origin, this problem can be considered minor in the context of turbulent diffusion. 
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Figure 8-2. Energy spectrum versus frequency: a) T, F1, and F2 on log-log scale and b) 
AT, Eq. (8.10) with m = 1.0056, and F2 on log-linear scale  
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In addition, both have given good agreement with various numerical and experimental 

results.  For example, Yeung and Pope (1989) obtained RL from direct numerical 

simulations (DNS) of stationary homogeneous turbulence at moderate Reynolds numbers 

and compared the results with the data measured in grid turbulence by Sato and 

Yamamoto (1987), finding that the classical exponential form (or T) shows a good fit.   

Berlemont et al. (1990) however found better agreement when using F1 in the computer 

program PALAS (PArticle LAgrangian Simulation) with the experimental data from a 

turbulent pipe flow by Taylor and Middleman (1974).  For F2, although most of the 

requirements are met, it does not agree with K41 theory.  For AT, it suffers from lack of a 

well-defined TL, disagreement with K41 theory, and its spectrum being negative for some 

frequencies.  The first problem of AT may be remedied as follows:  Let C denote the ratio 

of TL to the integral of the right-hand-side term in Eq. (8.9) (i.e. C ≈ 0.9996 −1 ≈ 1.0004).   

Then, AT can be rewritten by   
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Nevertheless, this remedy still does not satisfy K41 theory and the non-negativity of the 

energy spectrum.   
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Appendix 

 From Gradshteyn and Ryzhik (2000, p.483 and 488),  
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CHAPTER 9 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

The research described herein has applied the technique of Lagrangian particle (or 

stochastic) modeling to the short-range dispersion of an air pollutant.  The motivation 

behind the research is the development and application of an advanced and accurate 

modeling tool in determining how an air pollutant disperses downwind from an emission 

source in order to estimate emission strength and mean concentrations at downwind 

receptors.  Lagrangian particle modeling is a relatively new modeling technique that has 

been considerably advanced during last fifteen years.  Its fundamental principle lies in the 

assumption that pollutant particles randomly migrate in a turbulent flow.  Its major 

advantages are that it accounts for extensive details of a turbulent flow and that its 

numerical implementation is straightforward.  A tradeoff is computational time that is 

usually large compared to other modeling approaches (e.g. Gaussian plume modeling).  

In practice, the applicability of a Lagrangian particle model (LPM) may be limited by 

lack of complete information to (i) fully parameterize turbulence quantities required by 

the model and (ii) suggest a valid closure to the model, resorting to some level of 

interpolation or approximation. 

 In this thesis, a single-particle, three-dimensional source-receptor LPM was 

developed for air pollutant dispersion in the atmospheric boundary layer (ABL) where 

turbulence quantities were determined by similarity-based interpolation formulas chosen 

from the literature.  Due to the assumption of a conservative process (no gain and loss of 
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a pollutant’s mass after release), the emission strength of a source is linearly proportional 

to the mean concentration at a downwind receptor.  Data sets from two field studies, the 

Rubbertown field study and the Project Prairie Grass (PPG) experiments, were adopted 

for use in examining the performance of the LPM (Chapter 3).  In the Rubbertown field 

study, large differences in the mean ground-level concentrations (shortly, concentrations) 

between model predictions and measurements were found but not clearly concluded from 

a statistical point of view for the reason that the number of available data points were 

limited and measurement issues (e.g. detection limit questions and measurement 

accuracy).  This inconsistency may be alleviated by the detailed characterization of the 

field terrain but was not available to this work.  The accuracy of basic meteorological 

parameters (e.g. Monin-Obukhov length and friction velocity) is also important.  Errors 

of their estimates will impact on model results.  Various measurement techniques have 

been proposed for estimating meteorological parameters (van Ulden and Holtslag, 1985).  

Most meteorological parameters were derived here based on two-height measurements.  

Using more heights, together with other estimation procedures, will improve the 

confidence level of their estimates.   In the PPG experiments, the model evaluation was 

statistically reliable due to the availability of a large, robust, and well characterized data 

set.  Satisfactory agreement between model predictions and field data chosen for stable 

conditions was achieved.  The LPM parameterized for the PPG data set was then used as 

the platform for parametric uncertainty analysis (Chapter 4). 

The effects of uncertainties in Monin-Obukhov length, friction velocity, 

roughness height, mixing height, and the universal constant of the LPM parameterized for 

the PPG data set on mean ground-level concentrations were intensively examined for 
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dispersion under slightly and moderately stable conditions.  The spatial domain was 

extended to 3 km downwind from a near-ground continuous point source.  The analysis 

was performed under a probabilistic framework using Monte Carlo simulations with 

Latin hypercube sampling and linear regression modeling.  It has been shown that, among 

the meteorological parameters, friction velocity is an important input.  The uncertainty 

contributions from Monin-Obukhov length and mixing height are generally not important 

for most receptors but the importance of both tend to increase when the degree of 

stability decreases.  The universal constant is another influential input because its 

uncertainty contribution often dominates those from most other inputs.  It has however 

little or no influence for some distances in the crosswind or lateral direction. The overall 

contribution from roughness height was found to be slight.  Additional analysis of the 

half width of mean ground-level concentration contours downwind from the source 

suggested that the two largest contributors to uncertainty are the universal constant and 

Monin-Obukhov length whereas the other inputs do not play a significant role.  Important 

or influential uncertainty contributors reflect the necessity of using their accurate values 

in the modeling.   

In addition, four specific subjects related to the Lagrangian particle modeling 

were studied, and their conclusions are given as follows:  A first study dealt with the 

analytical formulation of probability density functions (pdfs) of fluid velocity in a 

turbulent flow that are a central component of the Lagrangian particle modeling, as seen 

in Chapter 2.  The pdf formulation for one velocity component has been quite 

comprehensive whereas less advance have been achieved for the formulation for more 

than one velocity component due to mathematical difficulties arising while incorporating 
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the a priori partial knowledge of velocity statistics (i.e. moments) into the formulation.  

An alternative technique in formulating an analytical form of the joint pdf of velocity has 

been presented in this thesis (Chapter 5) based on the technique developed by Koehler 

and Symanowski (1995) (shortly, KS formulation), by which a joint pdf is constructed 

using the knowledge of marginal distributions of velocity.  How to apply the KS 

technique to developing a joint pdf was demonstrated and discussed.  The emphasis was 

given to atmospheric turbulence under convective conditions where the vertical velocity 

is assumed to be positively skew and negatively correlated with the horizontal velocity.  

It has been shown that the technique facilitates a way to formulate a joint pdf using the 

information of marginal densities and provides high flexibility in fitting a specified 

correlation between two velocity components.  It may be used in practice when marginal 

densities are well characterized or specified.  Usually, the technique yields a large 

number of possible pdfs given the same information.  Thus, selecting a practical or 

suitable pdf by taking into account higher product cross moments is encouraged.   

 A second study dealt with analyzing local increments involved in (first-order) 

LPMs (Chapter 6).  Typically, an LPM is essentially built upon a number of assumptions, 

some of which are directly related to a local time scale (i.e. increment) in which the 

model proceeds.  Several aspects of local increments in a multidimensional single-

particle LPM have been analyzed and discussed.  The main tools used for the analysis 

were the algebra of Ito integrals and the Wagner-Platen formula, giving the expanded 

forms of the statistics of local increments and those related to the diffusion coefficient of 

the model.  The analysis has shown that the form of the diffusion coefficient of the model 

possesses an intrinsic tendency of anisotropy and velocity dependence, given that the 
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inertial subrange theory applies.  To reduce these effects to good approximation, the 

magnitude of a local time increment should be (much) smaller than some specific time 

scales.  In addition, the analysis was extended to local numerical increments and errors 

for the Euler (EL), Milstein (MS), and order-1.5 strong Taylor (ST) schemes, among 

which the ST scheme is best in terms of accuracy because of the higher level of 

truncating high-order terms in the scheme.  Given the isotropic and velocity-independent 

diffusion coefficient, the EL and ML schemes become equivalent.  The roles of three 

restriction strategies of time step sizes for the Euler scheme that have been used by some 

workers have also been examined.  It has been shown that two strategies are to constrain 

time step sizes to be small such that the accuracy of the first- and second-order statistics 

of ∆xi is ensured. The other strategy corresponds to the restriction of the local time scale 

of nonstationarity and inhomogeneity of turbulence.  

A third study discussed analogy between the diffusion limit of LPMs and the 

classical theory of turbulent diffusion of Taylor (1921) (Chapter 7).  The diffusion limit 

refers to the asymptotic condition where the local decorrelation time scale of turbulence 

becomes zero, causing a first-order LPM to reduce to a zeroth-order LPM called a 

random displacement model (RDM) that is theoretically equivalent to an eddy diffusion 

model.  The method used in performing the asymptotic reduction was the projection 

formalism. It has been shown that the eddy diffusivity may be theoretically defined as the 

area under the curve of correlation function versus positive time lag, given that the 

reduced (i.e. genuine) form of the Fokker-Planck equation defines the local evolution of a 

particle temporally and spatially. 
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A fourth study briefly discussed four proposed forms of Lagrangian velocity 

autocorrelation for stationary homogeneous turbulent diffusion from a classical point of 

view using a set of mathematical and physical requirements (Chapter 8).   The 

deficiencies of some forms were indicated, such as an ill-defined Lagrangian time scale 

and the negativity of an energy spectrum for some frequencies.      

Finally, as in any research, the work concluded above can be improved, extended, 

or investigated further beyond the scope that has been done in this thesis.  Some 

recommendations given below suggest what could be pursued for the future work: 

 

� Characterization of a flow field over a non-uniform terrain 

As pointed out in Chapter 3, the LPM used in this study was designed for uniform 

topography while the actual background terrain in the Rubbertown field study was 

highly non-uniform, leading to an applicability problem of the LPM in question.   

Improvement of the modeling process could be done using such information but it 

was unfortunately not available.   Nevertheless, obtaining an actual flow field over a 

complex or non-uniform terrain is a very difficult task.  Although direct measurement 

is straightforward and desirable, it may not be practical because an intensive 

measurement network (in both horizontal and vertical planes) and a detailed 

description of a terrain are required.  Indeed, virtually no atmospheric dispersion 

experiments use such fine spatial instrumentation such that all essential physical 

processes are characterized.  Laboratory-scale, modeled topography with a wind 

tunnel may be used as an alternative (e.g. Meroney et al., 1999).  The LPM results 

could then be assessed using such data, and the model extended to such cases. 
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� Incorporation of high-order moments of velocity in the closure of a multidimensional 

LPM 

For a complex or non-uniform terrain, high-order moments of velocity can play a 

significant role in the migration of pollutant particles.  The LPM considered here was 

based on a basic closure approach given by Thomson (1987), accounting for the first- 

and second-order statistics of velocity only.  This closure is in fact only suitable for 

Gaussian turbulence.    The advance of assigning a valid closure to a one-dimensional 

LPM (specifically speaking, the drift coefficient) for non-Gaussian turbulence is well 

established but this is not the case for multidimensional turbulence.  Some workers 

have gained only slight success in using sophisticated closures for non-Gaussian 

turbulence and comparing model results with experimental data (Flesch and Wilson, 

1992; Leuzzi and Monti, 1998), as mentioned in Chapter 3.  Accordingly, this subject 

still needs to be developed and fulfilled in the future.   

 

� Accuracy of estimating meteorological parameters 

The importance of using the accurate estimates of meteorological parameters was 

described in detail in Chapter 4.   In the Rubbertown field study, most of the basic 

meteorological parameters used as inputs in the modeling were derived from two-

height measurements (i.e. two-point profile method) at a single location, which is 

inadequate from a statistical point of view.  To have more confidence in their 

estimates, measurements at multiple heights and at multiple locations are needed.   
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Besides the profile method, other estimation techniques, if available, can be helpful to 

evaluating the quality of measured data.     

 

� Uncertainty due to using different pdfs formulated by the KS technique 

As said earlier, given specific information of marginal densities of velocity, the KS 

technique usually offers more than one possible pdf.  This is also the case when an 

additional constraint (i.e. correlation between two velocity components is imposed, as 

seen in Chapter 5, resulting in a large set of pdfs with different third- (and higher-) 

order cross product moments.  It may be of practical interest to examine uncertainty 

in particle dispersion using such pdfs. 

 

� Issues of accuracy and computational time using different sets of restriction strategies 

of time step size in numeral implementation of an LPM 

Schwere et al. (2002) brought up the practical idea of how to speed up the 

computational time of one-dimensional LPMs based on the elimination or adjustment 

of some time-consuming steps during implementation by the Euler scheme.  In this 

thesis (Chapter 6), three numerical differencing schemes and various local numerical 

time scales have been discussed for multidimensional LPMs.  Thus, it may be of 

interest to extend the scope of their work to multidimensional problems, together with 

incorporating results found here. 

 

� Comparison of uncertainty in mean concentrations due to two different types of 

Lagrangian particle modeling: zeroth-order and first-order 
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As said in Chapter 7, a zeroth-order LPM (or a random displacement model) is a 

simplified version of a first-order LPM.  Its numerical implementation is less 

complicated and less time-consuming.  Nevertheless, it has a severe limitation that the 

local decorrelation time scale at any point of time and space should be small. This can 

lead to a further investigation of how a zeroth-order LPM suitably can be applied in 

the context of short-range dispersion and the uncertainty in mean concentrations due 

to using these two different modeling approaches (i.e. zeroth- and first-order) for 

different conditions of the atmosphere.  
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APPENDIX A 

 

TIMES SERIES OF DATA FROM THE RUBBERTOWN FIELD STUDY 

   

 The time series of wind, temperature, and heat flux data collected at the 

Chickasaw Park and processed by the GTRI team during the afternoon of June 23, 2000 

are provided below.  In the figures, u, v, and w are the velocity components in along-

wind, crosswind, and vertical directions, respectively, while z, T and Tw ′′  are the 

measurement height, the temperature, and the heat flux, respectively.  Extreme values 

(i.e. outliers) were removed from the original datasets.  Missing data points appear in 

some time series and are not used in calculation.   

 
 
 
 
 

 
 
 
 
 

 
Figure A-1. Time series of u by the ultrasonic anemometer at z = 4.0 
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Figure A-1. Time series of u by the ultrasonic anemometer at z = 4.0 m 
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Figure A-2. Time series of v by the ultrasonic anemometer at z = 4.0 m 
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Figure A-3. Time series of u by the laser wind sensor at z = 1.6 m 
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Figure A-4. Time series of w by the ultrasonic anemometer at z = 1.6 m 
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Figure A-5. Time series of T by the ultrasonic anemometer at z = 1.6 m 
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Figure A-6. Time series of Tw ′′  by the ultrasonic anemometer at z = 1.6 m 
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APPENDIX B 

 

DATA FROM THE PROJECT PRAIRIE GRASS EXPERIMENTS 

   

 The concentration and meteorological data preprocessed for 25 runs chosen from 

the Project Prairie Grass (PPG) experiments for model evaluation are given below.  The 

former data are from the PPG report of Barad (1958), and the latter data are from van 

Ulden (1978).   

 

Notations: Source Type Continuous, Point
Q: Emission Rate  Terrian Flat, Smooth
L : Monin-Obukhov Length Source  Height  (m) 0.46
u*: Friction Velocity zo (m) 0.008
zo : Roughness Height Concentration Unit mg m−3

θ : MeanWind Direction
( = 180 deg. at Pole 45 for arcs 50-400 m and at Pole 90 for arc 800 m)

No 1 Average θ  (deg.) 183.0 L  (m) 48
 PPG Run No. 17 Q (g s−1) 56.5 u * (m s−1) 0.21

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
37 0.160 82 0.085
38 1.40 0.030 83 0.435
39 20.1 0.345 84 1.86
40 54.3 2.96 0.110 0.025 85 4.94
41 159 20.1 1.84 0.150 86 8.09
42 302 76.2 13.4 2.03 87 9.74
43 518 177 46.8 13.1 88 9.04
44 633 269 83.2 26.9 89 6.28
45 645 254 86.2 25.7 90 2.98
46 561 164 46.0 8.63 91 0.755
47 330 90.6 14.4 1.11 92 0.285
48 195 33.2 2.70  93 0.035
49 106 8.93 0.245  
50 29.4 1.00
51 8.72 0.090
52 1.19
53 0.235

No 2 Average θ  (deg.) 188.0 L  (m) 25
 PPG Run No. 18 Q (g s−1) 57.6 u * (m s−1) 0.20

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
39 0.095 89 0.040
40 0.645 90 0.665
41 5.57 0.095 91 5.04
42 29.6 1.59 0.025 92 11.6
43 106 17.1 0.730  93 14.0
44 218 69.6 14.3 0.640 94 11.3
45 368 158 50.9 11.7 95 8.49
46 584 257 95.0 32.3 96 8.34
47 620 242 82.4 29.5 97 9.35
48 615 177 51.4 17.9 98 6.86
49 467 152 52.0 16.8 99 2.38
50 321 118 31.6 8.56 100 0.435
51 206 42.2 6.64 0.695 101 0.080
52 72.6 6.66 0.545 0.055 102 0.075
53 17.4 0.783 0.065 103 0.035
54 3.15 0.085
55 1.49
55 0.025
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No 3 Average θ  (deg.) 180.0 L  (m) 172
 PPG Run No. 21 Q (g s−1) 50.9 u* (m s−1) 0.38

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
34 0.230 78 0.020
35 0.925 79 0.215
36 2.55 0.025 80 0.595
37 6.63 0.380 81 0.915
38 15.6 2.39 0.040 82 1.26
39 39.3 8.70 0.975 0.095 83 1.11
40 66.5 22.5 5.29 1.11 84 1.46
41 131 41.0 11.6 3.22 85 2.31
42 210 65.9 19.1 4.72 86 3.03
43 267 91.7 27.1 8.37 87 3.26
44 275 96.6 29.6 9.03 88 2.95
45 255 91.5 27.6 8.43 89 1.99
46 201 66.3 17.1 2.18 90 0.955
47 129 34.7 4.98 0.485 91 0.280
48 76.2 12.0 1.51 0.035 92 0.075
49 35.6 1.83 0.140
50 10.6 0.415
51 1.36 0.085
52 0.110
53 0.025
54 0.045

No 4 Average θ  (deg.) 176.0 L  (m) 204
 PPG Run No. 22 Q (g s−1) 48.4 u* (m s−1) 0.46

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
33 0.235 78 0.015
34 1.56 79 0.040
35 4.65 0.035 80 0.305
36 11.7 0.865 81 0.685
37 27.0 4.22 0.060 82 2.13
38 59.0 11.4 1.04 83 2.51
39 117 30.8 5.92 0.230 84 2.31
40 170 55.8 14.4 2.37 85 1.74
41 213 78.5 25.5 7.11 86 0.865
42 224 81.8 27.7 8.64 87 0.450
43 200 60.3 16.3 4.75 88 0.205
44 143 33.8 7.45 1.71 89 0.075
45 84.6 16.7 3.75 0.695 90 0.020
46 37.4 6.78 0.895 0.065
47 18.5 2.24 0.265
48 7.08 0.480 0.070
49 2.60 0.080 0.020
50 0.750
51 0.185
52 0.030

No 5 Average θ  (deg.) 128.0 L  (m) 193  
 PPG Run No. 23 Q (g s−1) 40.9 u* (m s−1) 0.39  

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
10 0.060 31 0.035
11 0.670 32 0.165
12 3.42 0.045 33 0.260
13 9.87 1.18 34 0.595
14 33.6 5.04 0.120 35 1.24
15 69.6 15.6 1.66 0.050 36 1.87
16 95.0 32.9 7.95 0.740 37 2.09
17 124 43.7 13.7 1.51 38 1.66
18 145 52.8 18.1 4.81 39 1.34
19 170 61.7 19.5 6.36 40 1.15
20 176 55.2 16.8 3.94 41 0.875
21 136 40.4 10.6 2.71 42 0.485
22 94.7 23.7 5.82 1.77 43 0.345
23 54.9 14.3 4.49 0.810 44 0.125
24 24.5 8.39 2.20 0.245
25 16.4 3.84 0.555 0.049
26 7.53 1.42 0.080
27 3.60 0.360 0.025
28 1.48 0.080 0.025
29 0.300
30 0.185
31 0.045

 

 

 253



No 6 Average θ  (deg.) 141.0 L  (m) 248  
 PPG Run No. 24 Q (g s−1) 41.2 u * (m s−1) 0.38  

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
15 0.040 46 0.110
16 0.130 47 0.345
17 0.510 0.020 48 0.795
18 0.830 0.120 49 1.23
19 3.62 0.310 50 1.60
20 10.0 0.800 0.050 51 1.81
21 31.1 2.25 0.245 52 1.92
22 53.4 9.21 1.07 0.050 53 1.68
23 79.7 21.9 4.30 0.755 54 1.19
24 101 34.8 10.9 2.60 55 0.645
25 124 45.3 14.9 5.00 56 0.435
26 158 50.4 17.0 5.58 57 0.185
27 152 50.7 16.0 5.43 58 0.110
28 144 46.5 14.9 4.24 59 0.035
29 125 39.2 9.56 1.68
30 86.4 22.4 4.05 0.420
31 51.5 10.0 1.73 0.055
32 29.6 4.32 0.215
33 13.3 0.990
34 4.37 0.155
35 1.44
36 0.250
37 0.025

 
No 7 Average θ  (deg.) 174.0 L  (m) 24

 PPG Run No. 28 Q (g s−1) 41.7 u * (m s−1) 0.16

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
33 0.070 78 0.055
34 0.180 79 0.370
35 12.0 0.370 80 2.35
36 42.5 5.81 0.065 81 6.79
37 100 20.4 1.03 82 10.1
38 152 45.6 8.24 0.12 83 8.65
39 218 79.8 22.4 2.28 84 6.87
40 299 115 33.9 10.4 85 4.72
41 378 156 42.8 18.2 86 2.57
42 488 192.0 57.9 21.1 87 0.925
43 450 179 59.5 19.0 88 0.250
44 408 144 46.9 13.5 89 0.065
45 326 98.3 24.3 4.93 90 0.030
46 209 52.2 13.9 0.755
47 107 17.4 4.82 0.020
48 50.7 5.75 0.490
49 21.3 1.10 0.030
50 5.91 0.115
51 0.610

No 8 Average θ  (deg.) 220.0 L  (m) 36
 PPG Run No. 29 Q (g s−1) 41.5 u * (m s−1) 0.23

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
48 0.025 114 0.025
49 0.020 115 0.085
50 0.070 116 0.230
51 0.170 117 0.745
52 0.790 118 1.40
53 2.43 0.025 119 2.18
54 6.93 0.205 120 2.60
55 16.7 1.23 0.015 121 2.48
56 44.6 6.32 0.370 122 1.78
57 91.5 16.5 1.94 0.180 123 1.54
58 127 35.7 8.63 1.27 124 1.24
59 167 63.0 19.9 5.45 125 1.56
60 234 79.5 27.6 9.18 126 1.82
61 234 87.8 24.2 7.37 127 1.78
62 248 74.9 21.8 5.66 128 1.60
63 191 71.1 21.9 7.62 129 1.10
64 186 51.5 13.3 4.48 130 0.905
65 152 41.7 12.6 2.9 131 0.795
66 146 45.6 12.6 3.24 132 0.625
67 128 40.5 11.2 3.55 133 0.795
68 112 35.6 10.6 2.65 134 0.835
69 115 43.5 15.4 4.18 135 0.835
70 101 46.8 16.7 5.97 136 1.06
71 81.0 30.8 8.31 3.09 137 0.970
72 38.1 11.1 2.93 0.715 138 1.41
73 15.6 3.47 0.735 0.125 139 1.80
74 4.13 0.845 0.180 0.055 140 1.44
75 0.920 0.305 0.115 0.025 141 1.23
76 0.380 0.135 0.055 142 0.880
77 0.185 0.055 0.015 143 0.435
78 0.100 144 0.150
79 0.040 145 0.035

146 0.010
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No 9 Average θ  (deg.) 170.5 L  (m) 8.3  
 PPG Run No. 32 Q (g s−1) 41.4 u * (m s−1) 0.13  

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
32 0.085 78 0.015
33 0.090 79 0.115
34 0.565 80 1.66
35 3.12 0.075 81 6.18
36 7.22 0.660 82 19.7
37 32.1 6.39 83 41.1
38 78.5 31.5 0.750  84 58.6
39 207 57.3 14.5 0.395 85 31.3
40 356 162 53.1 7.17 86 5.20
41 615 434 129 7.17 87 0.270
42 729 624 285 46.8 88 0.030
43 707 518 205 121 89 0.010
44 608 240 45.2 60.3 90 0.015
45 369 58.8 1.83 0.045
46 132 6.35 0.015  
47 44.9 0.435 0.010  
48 8.55 0.050 0.010
49 0.850
50 0.080

No 10 Average θ  (deg.) 131.5 L  (m) 6.8
 PPG Run No. 35 Q (g s−1) 38.8 u * (m s−1) 0.11

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
12 0.225 25 0.065
13 2.15 0.105 26 3.23
14 14.30 2.07 1.59 0.435 27 13.8
15 59.3 16.4 14.7 13.0 28 10.2
16 168 61.4 45.8 32.8 29 10.2
17 359 180 75.6 37.4 30 6.74
18 312 228 145 41.9 31 5.77
19 591 575 253 76.2 32 7.41
20 641 575 200 50.5 33 5.91
21 660 405 81.1 8.45 34 4.75
22 552 198 14.8 0.420 35 3.52
23 366 54.6 0.755 36 3.21
24 182 6.81 37 2.47
25 87.0 0.49 38 1.03
26 24.2 39 0.225
27 3.78 40 0.130
28 0.440 41 0.080

No 11 Average θ  (deg.) 159.0 L  (m) 7.8
 PPG Run No. 36 Q (g s−1) 40.0 u * (m s−1) 0.10

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
23 0.075 70 0.045
24 0.090 71 0.160
25 0.095 72 0.760
26 0.105 0.035 73 2.63
27 0.140 0.045 74 6.85
28 0.135 0.085 75 15.5
29 0.185 0.075 76 29.8
30 2.95 0.130 0.040 77 38.6
31 12.0 0.140 0.040 78 21.9
32 83.5 2.19 0.025 79 2.34
33 251 24.3 0.220
34 492 161 6.51 0.055
35 747 405 71.4 0.445
36 830 540 203 17.9
37 794 431 152 64.6
38 660 266 79.2 38.9
39 423 130 59.2 31.3
40 210 53.3 26.0 20.7
41 76.2 10.3 3.25 1.08
42 21.9 0.580 0.054
43 5.45
44 1.74
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No 12 Average θ  (deg.) 186.5 L  (m) 95
 PPG Run No. 37 Q (g s−1) 40.3 u* (m s−1) 0.29

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
39 0.055 87 0.050
40 0.795 0.025 88 0.230
41 3.09 0.325 89 0.795
42 11.8 1.53 0.040 90 1.41
43 27.8 6.53 0.780 0.045 91 1.94
44 53.0 17.6 4.53 0.860 92 1.98
45 99.3 37.1 10.3 3.06 93 1.55
46 173 56 16.4 5.54 94 1.44
47 176 60.9 18.5 4.29 95 1.34
48 224 78.0 18.9 5.40 96 1.46
49 224 74.1 22.9 7.39 97 2.08
50 170 57.6 18.5 4.61 98 2.02
51 128 36.6 8.01 2.03 99 1.62
52 68.9 15.5 3.31 0.520 100 0.975
53 28.4 6.42 0.905 0.100 101 0.480
54 15.5 1.56 0.085 102 0.150
55 7.86 0.490 0.080 103 0.025
56 3.53 0.130
57 1.39 0.055
58 0.055
59 0.020

No 13 Average θ  (deg.) 170.0 L  (m) 99
 PPG Run No. 38 Q (g s−1) 45.4 u* (m s−1) 0.28

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
31 0.020 75 0.075
32 0.350 76 0.520
33 1.74 77 1.660
34 5.48 0.210 78 3.85
35 19.4 1.08 0.020 79 6.01
36 54.6 5.00 0.270  80 6.44
37 126 19.8 1.85 0.055 81 4.63
38 219 57.6 11.5 1.36 82 1.91
39 333 118 33.0 7.90 83 0.580
40 380 153 51.4 18.7 84 0.085
41 360 134 46.9 13.7
42 273 87.3 17.4 3.44
43 170 31.5 4.61 0.430
44 84.3 7.55 0.980 0.050
45 30.3 1.97 0.140 0.025
46 2.64 0.300
47 1.38 0.050
48 0.210
49 0.030

No 14 Average θ  (deg.) 139.5 L  (m) 9.8
 PPG Run No. 39 Q (g s−1) 40.7 u* (m s−1) 0.14

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
17 0.225 0.040 40 M
18 1.22 0.110 41 M
19 7.83 0.340 0.050 42 M
20 30.3 1.86 0.210 0.060 43 M
21 91.8 11.1 0.350 0.075 44 M
22 182 39.6 4.62 0.045 45 M
23 276 98.4 23.8 1.38 46 M
24 302 117 36.8 8.24 47 M
25 470 140 42.7 17.0 48 M
26 425 161 54.2 20.1 49 M
27 378 130 49.6 10.7 50 3.70
28 249 79.7 20.6 3.43 51 2.16
29 155 37.5 4.42 0.540 52 1.56
30 92.2 13.1 1.95 0.080 53 1.83
31 38.6 2.13 0.180 54 1.36
32 11.6 0.310 55 0.835
33 2.62 0.015 56 M
34 0.445 57 M
35 0.005 58 M
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No 15 Average θ  (deg.) 179.5 L  (m) 8.0
 PPG Run No. 40 Q (g s−1) 40.5 u* (m s−1) 0.11

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
35 0.295 80 0.035
36 0.640 81 0.260
37 2.85 0.080 82 0.735
38 11.6 0.455 0.025 83 1.38
39 24.9 2.97 0.180 M 84 1.64
40 64.8 14.2 2.33 M 85 1.72
41 156 42.2 11.5 M 86 1.57
42 227 76.4 25.8 M 87 1.55
43 318 105 27.9 M 88 1.49
44 312 99.9 26.8 M 89 1.56
45 281 77.1 24.3 M 90 1.38
46 215 75.6 18.5 4.95 91 1.34
47 201 53.7 17.7 3.73 92 1.28
48 204 52.7 16.6 5.05 93 1.36
49 168 55.8 14.5 4.80 94 1.15
50 180 74.1 23.7 5.85 95 0.900
51 185 76.4 32.7 14.6 96 1.22
52 125 49.1 14.5 5.85 97 1.36
53 68.3 16.1 2.15 0.375 98 1.62
54 33.0 2.19 0.085 99 1.79
55 10.7 0.195 100 2.21
56 1.35 101 3.33
57 0.150 102 5.99
58 0.025 103 6.48

104 2.80
105 0.465

 106 0.045

No 16 Average θ  (deg.) 198.0 L  (m) 35
 PPG Run No. 41 Q (g s−1) 39.9 u* (m s−1) 0.23

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
48 0.260 102 0.010
49 2.60 0.185 103 0.240
50 22.7 1.92 0.125  104 1.34
51 74.7 18.6 2.27 0.235 105 4.33
52 198 59.7 17.6 4.32 106 8.57
53 378 142 48.8 16.7 107 9.92
54 450 189 67.8 25.0 108 6.43
55 362 144 39.0 9.00 109 1.72
56 236 64.7 9.81 0.675 110 0.400
57 106 15.0 0.765 111 0.055
58 33.6 2.10 0.035
59 4.97 0.295  
60 0.270

No 17 Average θ  (deg.) 212.0 L  (m) 120
 PPG Run No. 42 Q (g s−1) 56.4 u* (m s−1) 0.37

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
51 0.580 113 0.070
52 0.945 114 0.280
53 2.61 115 0.725
54 9.68 0.440 116 1.31
55 21.0 2.88 0.075 0.005 117 1.70
56 50.3 5.87 1.07 0.045 118 2.13
57 106 25.2 5.24 1.07 119 1.98
58 183 53.6 15.6 3.49 120 1.95
59 242 83.9 25.3 7.12 121 2.11
60 276 100 31.5 7.77 122 2.11
61 254 84.8 23.4 5.59 123 1.94
62 204 56.1 15.5 5.16 124 1.76
63 127 41.3 12.6 4.17 125 1.36
64 103 32.3 8.56 1.94 126 0.815
65 76.2 17.1 2.76 0.455 127 0.310
66 48.6 4.52 0.595 0.060 128 0.070
67 19.7 1.23 0.090 129 0.020
68 5.18 0.225  
69 1.05 0.055
70 0.075
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No 18 Average θ  (deg.) 134.0 L  (m) 114
 PPG Run No. 46 Q (g s−1) 99.7 u * (m s−1) 0.34

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
14 0.065 0.110 0.055 35 0.095
15 0.535 0.125 0.055 36 0.445
16 4.59 0.325 0.085 37 1.10
17 16.4 2.09 0.420 0.050 38 3.22
18 59.3 13.5 3.530 0.715 39 6.08
19 177 58.8 17.6 3.95 40 6.33
20 384 131 53.1 15.0 41 3.63
21 512 198 60.8 20.9 42 3.11
22 564 188 47.8 12.6 43 4.01
23 546 142 33.3 9.79 44 3.06
24 434 114 27.8 4.84 45 1.86
25 363 111 32.8 8.48 46 1.01
26 267 92.1 32.0 11.0 47 1.12
27 206 72.5 22.1 6.63 48 1.81
28 147 41.0 11.8 1.44 49 2.62
29 99.0 28.4 4.29 0.233 50 3.08
30 54.5 17.1 0.480 51 2.83
31 37.1 4.79 52 1.74
32 18.9 0.265 53 0.895
33 11.4 0.130 54 0.445
34 1.88 0.040 55 0.110
35 0.370 0.140 56 0.060
36 0.160 0.155 57 0.015

No 19 Average θ  (deg.) 132.5 L  (m) 10
 PPG Run No. 53 Q (g s−1) 45.2 u * (m s−1) 0.17

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
14 0.110 36 0.150
15 2.60 37 4.41
16 23.1 0.710 0.050 38 24.7
17 109 16.7 0.775 0.035 39 34.2
18 218 102 21.0 0.925 40 25.6
19 608 305 115 31.7 41 12.8
20 786 534 233 86.2 42 2.52
21 923 488 162 50.3 43 0.210
22 755 258 28.4 3.48 44 0.025
23 410 47.1 0.955
24 155 4.53
25 37.8 0.115
26 2.76
27 0.035

No 20 Average θ  (deg.) 140.0 L  (m) 40
 PPG Run No. 54 Q (g s−1) 43.4 u * (m s−1) 0.24

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
17 0.240 43 0.040
18 0.780 44 0.155
19 6.81 0.190 0.135 45 1.04
20 29.1 2.04 0.180  46 3.60
21 80.1 13.8 1.11 0.050 47 7.92
22 152 44.4 8.01 0.88 48 9.51
23 261 99.3 32.2 7.12 49 6.62
24 374 156 62 22.3 50 2.64
25 422 171 55.8 19.3 51 0.800
26 356 105 25.0 4.82 52 0.050
27 215 43.4 6.38 0.670 53 0.065
28 105 13.2 1.11 0.555 54 0.080
29 40.1 2.31 0.205  55 0.085
30 5.87 0.350 56 0.015
31 1.37 57 0.070
32 0.070
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No 21 Average θ  (deg.) 155.5 L  (m) 124
 PPG Run No. 55 Q (g s−1) 45.3 u* (m s−1) 0.37

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
23 0.330 59 0.025
24 0.485 0.010 60 0.115
25 0.635 0.020 61 0.365
26 2.45 0.030 62 0.885
27 8.16 0.190 63 1.85
28 20.6 1.01 0.035 64 2.49
29 44.7 5.49 0.430  65 2.83
30 86.9 18.5 2.53 0.345 66 2.39
31 145 44.7 13.4 2.10 67 1.81
32 192 66.8 22.4 5.54 68 1.19
33 219 84.2 27.2 7.83 69 0.615
34 218 82.7 26.3 7.35 70 0.275
35 192 65.6 18.7 3.45 71 0.085
36 156 38.0 6.09 0.860 72 0.020
37 97.2 14.9 1.36 0.045  
38 50.1 4.04 0.335  
39 14.3 0.805 0.090
40 1.61 0.300
41 0.580 0.080
42 0.160
43 0.050

No 22 Average θ  (deg.) 152.5 L  (m) 76
 PPG Run No. 56 Q (g s−1) 45.9 u* (m s−1) 0.29

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
21 0.085 57 0.050
22 0.115 0.070 58 0.195
23 0.200 0.120 59 0.745
24 0.34 0.130 60 2.08
25 2.90 0.155 0.020 61 3.76
26 8.55 0.405 0.035 62 4.50
27 33.0 3.50 0.245 63 4.74
28 77.9 14.1 2.13 0.055 64 4.20
29 156 40.5 9.01 1.18 65 2.48
30 216 74.0 22.7 4.90 66 0.905
31 284 110 33.0 11.3 67 0.230
32 308 110 36.3 12.6 68 0.075
33 279 91.7 28.7 8.46 69 0.025
34 218 70.2 16.7 2.89
35 147 36.9 5.58 0.510  
36 92.7 13.0 0.915 0.030
37 41.3 2.81 0.095 0.010
38 10.8 0.370
39 2.40
40 0.310

No 23 Average θ  (deg.) 178.5 L  (m) 6.4
 PPG Run No. 58 Q (g s−1) 40.5 u* (m s−1) 0.11

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
40 0.020 86 0.040
41 0.560 87 3.10
42 6.68 88 24.5
43 60.2 2.96 0.035 89 59.4
44 279 48.9 4.34 0.800 90 48.2
45 557 293 80.9 43.8 91 12.0
46 1000 660 311 140 92 0.215
47 794 575 221 27.1
48 633 318 37.9 0.090
49 410 52.1 0.550
50 150 2.93 0.020
51 21.6
52 1.10
53 0.090
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No 24 Average θ  (deg.) 173.5 L  (m) 11
 PPG Run No. 59 Q (g s−1) 40.2 u * (m s−1) 0.14

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
35 0.110 82 0.165
36 0.165 83 3.43
37 0.330 84 20.3
38 1.36 85 39.4
39 14.3 0.300 86 22.3
40 100 7.01 0.090 87 3.55
41 332 77.0 7.43 0.325 88 0.295
42 567 303 88.8 22.1 89 0.030
43 723 524 239 101.0
44 707 419 134 26.4
45 552 174 22.1 0.835
46 239 23.6 0.870 0.870
47 67.2 2.51
48 11.8 0.305
49 4.43 0.055  
50 0.265

No 25 Average θ  (deg.) 198.5 L  (m) 58
 PPG Run No. 60 Q (g s−1) 38.5 u * (m s−1) 0.28

Pole  Arc at 50 m Arc at 100 m Arc at 200 m Arc at 400 m Pole Arc at 800 m
44 0.015 0.010 104 0.085
45 0.045 0.070 105 0.545
46 0.125 0.515 106 1.79
47 0.210 0.480 107 4.15
48 0.870 0.375 0.070 108 6.07
49 4.07 0.470 0.120 109 4.75
50 22.5 1.73 0.275 110 2.440
51 65.0 8.12 0.795 0.030 111 0.815
52 130 33.2 6.40 0.540 112 0.135
53 237 83.1 26.4 5.18 113 0.050
54 302 118 43.6 15.1
55 281 114 40.2 10.8
56 212 53.4 13.3 3.20
57 110 27.2 2.98 0.270
58 44.7 4.94 0.330
59 10.6 0.415
60 1.76 0.060
61 0.220 0.045
62 0.140  
63 0.110
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