2 research outputs found

    On the Uniqueness of Ideality Factor and Voltage Exponent of Perovskite-Based Solar Cells

    No full text
    Perovskite-based solar cells have attracted much recent research interest with efficiency approaching 20%. While various combinations of material parameters and processing conditions are attempted for improved performance, there is still a lack of understanding in terms of the basic device physics and functional parameters that control the efficiency. Here we show that perovskite-based solar cells have two universal features: an ideality factor close to two and a space-charge-limited current regime. Through detailed numerical modeling, we identify the mechanisms that lead to these universal features. Our model predictions are supported by experimental results on solar cells fabricated at five different laboratories using different materials and processing conditions. Indeed, this work unravels the fundamental operation principle of perovskite-based solar cells, suggests ways to improve the eventual performance, and serves as a benchmark to which experimental results from various laboratories can be compared

    Efficient Organic Photovoltaics with Improved Charge Extraction and High Short-Circuit Current

    No full text
    Exciton generation, dissociation, free carrier transport, and charge extraction play an important role in the short-circuit current (<i>J</i><sub>sc</sub>) and power conversion efficiency of an organic bulk heterojunction (BHJ) solar cell (SC). Here we study the impact of band offset at the interfacial layer and the morphology of active layer on the extraction of free carriers. The effects are evaluated on an inverted BHJ SC using zinc oxide (ZnO) as a buffer layer, prepared via two different methods: ZnO nanoparticle dispersed in mixed solvents (ZnO A) and sol–gel method (ZnO B). The device with ZnO A buffer layer improves the charge extraction and <i>J</i><sub>sc</sub>. The improvement is due to the better band offset and morphology of the blend near the ZnO A/active layer interface. Further, the numerical analysis of current–voltage characteristics illustrates that the morphology at the ZnO A/active layer interface has a more dominant role in improving the performance of the organic photovoltaic than the band offset
    corecore