930 research outputs found
Spontaneous Interlayer Charge Transfer near the Magnetic Quantum Limit
Experiments reveal that a confined electron system with two equally-populated
layers at zero magnetic field can spontaneously break this symmetry through an
interlayer charge transfer near the magnetic quantum limit. New fractional
quantum Hall states at unusual total filling factors such as \nu = 11/15 (= 1/3
+ 2/5) stabilize as signatures that the system deforms itself, at substantial
electrostatic energy cost, in order to gain crucial correlation energy by
"locking in" separate incompressible liquid phases at unequal fillings in the
two layers (e.g., layered 1/3 and 2/5 states in the case of \nu = 11/15).Comment: 4 pages, 4 figures (1 color) included in text. Related papers at
http://www.ee.princeton.edu/~hari/papers.htm
The Effect of Spin Splitting on the Metallic Behavior of a Two-Dimensional System
Experiments on a constant-density two-dimensional hole system in a GaAs
quantum well reveal that the metallic behavior observed in the
zero-magnetic-field temperature dependence of the resistivity depends on the
symmetry of the confinement potential and the resulting spin-splitting of the
valence band
Scattering Theory of Kondo Mirages and Observation of Single Kondo Atom Phase Shift
We explain the origin of the Kondo mirage seen in recent quantum corral
Scanning Tunneling Microscope (STM) experiments with a scattering theory of
electrons on the surfaces of metals. Our theory combined with experimental data
provides the first direct observation of a single Kondo atom phase shift. The
Kondo mirage at the empty focus of an elliptical quantum corral is shown to
arise from multiple electron bounces off the walls of the corral in a manner
analagous to the formation of a real image in optics. We demonstrate our theory
with direct quantitive comparision to experimental data.Comment: 13 pages; significant clarifications of metho
Projecting the Kondo Effect: Theory of the Quantum Mirage
A microscopic theory is developed for the projection (quantum mirage) of the
Kondo resonance from one focus of an elliptic quantum corral to the other
focus. The quantum mirage is shown to be independent of the size and the shape
of the ellipse, and experiences \lambda_F/4 oscillations (\lambda_F is the
surface-band Fermi wavelength) with an increasing semimajor axis length. We
predict an oscillatory behavior of the mirage as a function of a weak magnetic
field applied perpendicular to the sample.Comment: 4 pages 2 figures include
Zero-temperature Phase Diagram For Strongly-Correlated Nanochains
Recently there has been a resurgence of intense experimental and theoretical
interest on the Kondo physics of nanoscopic and mesoscopic systems due to the
possibility of making experiments in extremely small samples. We have carried
out exact diagonalization calculations to study the effect of the energy
spacing of the conduction band on the ground-state properties of a
dense Anderson model nanochain. The calculations reveal for the first time that
the energy spacing tunes the interplay between the Kondo and RKKY interactions,
giving rise to a zero-temperature versus hybridization phase diagram
with regions of prevailing Kondo or RKKY correlations, separated by a {\it free
spins} regime. This interplay may be relevant to experimental realizations of
small rings or quantum dots with tunable magnetic properties.Comment: 8 pages, 3 figures. J. Appl. Phys. (in press
Duality and Anholonomy in Quantum Mechanics of 1D Contact Interactions
We study systems with parity invariant contact interactions in one dimension.
The model analyzed is the simplest nontrivial one --- a quantum wire with a
point defect --- and yet is shown to exhibit exotic phenomena, such as strong
vs weak coupling duality and spiral anholonomy in the spectral flow. The
structure underlying these phenomena is SU(2), which arises as accidental
symmetry for a particular class of interactions.Comment: 4 pages ReVTeX with 4 epsf figures. KEK preprint 2000-3. Correction
in Eq.(14
Adsorbed 3d transition metal atoms and clusters on Au(111):Signatures derived from one electron calculations
The spectroscopic characteristics of systems with adsorbed d impurities on
noble metal surfaces should depend on the number and geometric arrangement of
the adsorbed atoms and also on their d band filling. Recent experiments using
scanning tunneling microscopy have probed the electronic structure of all 3d
transition metal impurities and also of Co dimers adsorbed on Au(111),
providing a rich variety of results. In this contribution we correlate those
experimental results with ab-initio calculations and try to establish necessary
conditions for observing a Kondo resonance when using the single impurity
Anderson model. We find that the relevant orbitals at the STM tip position,
when it is on top of an impurity, are the dThe spectroscopic characteristics of
systems with adsorbed d impurities on noble metal surfaces should depend on the
number and geometric arrangement of the adsorbed atoms and also on their d band
filling. Recent experiments using scanning tunneling microscopy have probed the
electronic structure of all 3d transition metal impurities and also of Co
dimers adsorbed on Au(111), providing a rich variety of results. In this
contribution we correlate those experimental results with ab-initio
calculations and try to establish necessary conditions for observing a Kondo
resonance when using the single impurity Anderson model. We find that the
relevant orbitals at the STM tip position, when it is on top of an impurity,
are the d orbitals with m=0 and that the energy of these levels with respect to
the Fermi energy determines the possibility of observing a spectroscopic
feature due to the impurity. orbitals with m=0 and that the energy of these
levels with respect to the Fermi energy determines the possibility of observing
a spectroscopic feature due to the impurity
Investigating the driving mechanisms of coronal mass ejections
The objective of this investigation was to first examine the kinematics of
coronal mass ejections (CMEs) using EUV and coronagraph images, and then to
make a comparison with theoretical models in the hope to identify the driving
mechanisms of the CMEs. We have studied two CMEs which occurred on 2006 Dec. 17
(CME06) and 2007 Dec. 31 (CME07). The models studied in this work were
catastrophe, breakout, and toroidal instability models. We found that after the
eruption, the accelerations of both events exhibited a drop before increasing
again. Our comparisons with the theories suggested that CME06 can be best
described by a hybrid of the catastrophe and breakout models while CME07 is
most consistent with the breakout model.Comment: 9 pages 7 figure
- …