1,262 research outputs found

    Moments of generalized parton distribution functions and the nucleon spin contents

    Full text link
    It is shown that, based only on two empirically known facts besides two reasonable theoretical postulates, we are inevitably led to a conclusion that the quark orbital angular momentum carries nearly half of the total nucleon spin. We also perform a model analysis to find that the quark spin fraction ΔΣ\Delta \Sigma is extremely sensitive to the pion mass, which may resolve the discrepancy between the observation and the prediction of the recent lattice QCD simulation carried out in the heavy pion region.Comment: LaTeX, 8 pages, 1 figur

    The Zero-Bin and Mode Factorization in Quantum Field Theory

    Get PDF
    We study a Lagrangian formalism that avoids double counting in effective field theories where distinct fields are used to describe different infrared momentum regions for the same particle. The formalism leads to extra subtractions in certain diagrams and to a new way of thinking about factorization of modes in quantum field theory. In non-relativistic field theories, the subtractions remove unphysical pinch singularities in box type diagrams, and give a derivation of the known pull-up mechanism between soft and ultrasoft fields which is required by the renormalization group evolution. In a field theory for energetic particles, the soft-collinear effective theory (SCET), the subtractions allow the theory to be defined with different infrared and ultraviolet regulators, remove double counting between soft, ultrasoft, and collinear modes, and give results which reproduce the infrared divergences of the full theory. Our analysis shows that convolution divergences in factorization formul\ae occur due to an overlap of momentum regions. We propose a method that avoids this double counting, which helps to resolve a long standing puzzle with singularities in collinear factorization in QCD. The analysis gives evidence for a factorization in rapidity space in exclusive decays.Comment: 92 pages, v4- Journal version. Some improvements to language in sections I, IIA, VI

    Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC

    Full text link
    Previous work on electroweak radiative corrections to high energy scattering using soft-collinear effective theory (SCET) has been extended to include external transverse and longitudinal gauge bosons and Higgs bosons. This allows one to compute radiative corrections to all parton-level hard scattering amplitudes in the standard model to NLL order, including QCD and electroweak radiative corrections, mass effects, and Higgs exchange corrections, if the high-scale matching, which is suppressed by two orders in the log counting, and contains no large logs, is known. The factorization structure of the effective theory places strong constraints on the form of gauge theory amplitudes at high energy for massless and massive gauge theories, which are discussed in detail in the paper. The radiative corrections can be written as the sum of process-independent one-particle collinear functions, and a universal soft function. We give plots for the radiative corrections to q qbar -> W_T W_T, Z_T Z_T, W_L W_L, and Z_L H, and gg -> W_T W_T to illustrate our results. The purely electroweak corrections are large, ranging from 12% at 500 GeV to 37% at 2 TeV for transverse W pair production, and increasing rapidly with energy. The estimated theoretical uncertainty to the partonic (hard) cross-section in most cases is below one percent, smaller than uncertainties in the parton distribution functions (PDFs). We discuss the relation between SCET and other factorization methods, and derive the Magnea-Sterman equations for the Sudakov form factor using SCET, for massless and massive gauge theories, and for light and heavy external particles.Comment: 44 pages, 30 figures. Refs added, typos fixed. ZL ZL plots removed because of a possible subtlet

    Radiative quarkonium decays and the NMSSM Higgs interpretation of the HyperCP Sigma+ --> p mu+mu- events

    Full text link
    We study the potential of radiative decays of the Upsilon(1S) and of the phi mesons to search for a light pseudoscalar Higgs boson, proposed as a possible interpretation of Sigma+ --> p mu+mu- events observed by the HyperCP collaboration at Fermilab. We conclude that the detection of this signal should certainly be possible with the current CLEO Upsilon(1S) data, and is within the reach of KLOE in at least part of the range of couplings suggested by the HyperCP findings.Comment: 6 pages, no figure

    A Lattice Test of 1/N_c Baryon Mass Relations

    Full text link
    1/N_c baryon mass relations are compared with lattice simulations of baryon masses using different values of the light-quark masses, and hence different values of SU(3) flavor-symmetry breaking. The lattice data clearly display both the 1/N_c and SU(3) flavor-symmetry breaking hierarchies. The validity of 1/N_c baryon mass relations derived without assuming approximate SU(3) flavor-symmetry also can be tested by lattice data at very large values of the strange quark mass. The 1/N_c expansion constrains the form of discretization effects; these are suppressed by powers of 1/N_c by taking suitable combinations of masses. This 1/N_c scaling is explicitly demonstrated in the present work.Comment: 13 pages, 20 figures; v2 version to be published in PR

    QCD Flux Tubes as Sigma Model Relics

    Get PDF
    We describe flux tubes and their interactions in a low energy sigma model induced by SU(\NF) \goto SO(\NF) flavor symmetry breaking in SO(Nc)SO(N_c) QCD. Gauge confinement manifests itself in the low energy theory through flux tube interactions with unscreened sources. The flux tubes which mediate confinement also illustrate an interesting ambiguity in defining global Alice strings.Comment: 12 pages (REVTEX) plus one figur

    Electroweak Corrections using Effective Field Theory: Applications to the LHC

    Full text link
    Electroweak Sudakov logarithms at high energy, of the form alpha/sin^2 theta_W^n log^m s/M_{Z,W}^2, are summed using effective theory (EFT) methods. The exponentiation of Sudakov logarithms and factorization is discussed in the EFT formalism. Radiative corrections are computed to scattering processes in the standard model involving an arbitrary number of external particles. The computations include non-zero particle masses such as the t-quark mass, electroweak mixing effects which lead to unequal W and Z masses and a massless photon, and Higgs corrections proportional to the top quark Yukawa coupling. The structure of the radiative corrections, and which terms are summed by the EFT renormalization group is discussed in detail. The omitted terms are smaller than 1%. We give numerical results for the corrections to dijet production, dilepton production, t-\bar t production, and squark pair production. The purely electroweak corrections are significant -- about 15% at 1 TeV, increasing to 30% at 5 TeV, and they change both the scattering rate and angular distribution. The QCD corrections (which are well-known) are also computed with the EFT. They are much larger -- about a factor of four at 1 TeV, increasing to a factor of thirty at 5 TeV. Mass effects are also significant; the q \bar q -> t \bar t rate is enchanced relative to the light-quark production rate by 40%.Comment: Additional details added on exponentiation, and the form of the Sudakov series. Figures darkened to print better. 40 pages, 40 figure

    Model Independent Results for Heavy Quarkonium

    Full text link
    We review a number of results for the spectrum and inclusive decays of heavy quarkonium systems which can be derived from QCD under well controlled approximations. They essentially follow from the hierarchy of scales in these systems, which can be efficiently exploited using non-relativistic effective field theories. In particular, we discuss under which conditions non-relativistic potential models emerge as effective theories of QCD.Comment: 15 pages. Invited brief revie

    Baryon Masses in Partially Quenched Heavy Hadron Chiral Perturbation Theory

    Full text link
    The masses of baryons containing a heavy quark are calculated to next-to-leading order in partially quenched heavy hadron chiral perturbation theory. Calculations are performed for three light flavors in the isospin limit and additionally for two light non-degenerate flavors. The results presented are necessary for extrapolating lattice QCD and partially quenched lattice QCD calculations of the heavy hadron masses.Comment: 20 pages, 2 figures, RevTex

    A Renormalization Group Improved Calculation of Top Quark Production near Threshold

    Get PDF
    The top quark cross section close to threshold in e+e−e^+e^- annihilation is computed including the summation of logarithms of the velocity at next-to-next-to-leading-logarithmic order in QCD. The remaining theoretical uncertainty in the normalization of the total cross section is at the few percent level, an order of magnitude smaller than in previous next-to-next-to-leading order calculations. This uncertainty is smaller than the effects of a light standard model Higgs boson.Comment: changed figures, added reference
    • …
    corecore