22 research outputs found

    Spatial Sequestration and Oligomer Remodeling During \u3cem\u3ede novo\u3c/em\u3e [\u3cem\u3ePSI\u3c/em\u3e\u3csup\u3e+\u3c/sup\u3e] Formation

    Get PDF
    Prions are misfolded, aggregated, infectious proteins found in a range of organisms from mammals to bacteria. In mammals, prion formation is difficult to study because misfolding and aggregation take place prior to symptom presentation. The study of the yeast prion [PSI+], which is the misfolded infectious form of Sup35p, provides a tractable system to monitor prion formation in real time. Recently, we showed that the de novo formation of prion aggregates begins with the appearance of highly mobile cytoplasmic foci, called early foci, which assemble into larger ring or dot structures. We also observed SDS-resistant oligomers during formation, and lysates containing newly formed oligomers can convert [psi−] cells to the [PSI+] state, suggesting that these oligomers have infectious potential. Here, we further characterize two aspects of prion formation: spatial sequestration of early foci and oligomerization of endogenous Sup35p. Our data provides important insights into the process of prion formation and explores the minimal oligomer requirement for infectivity

    Writing Assignments with a Metacognitive Component Enhance Learning in a Large Introductory Biology Course

    Get PDF
    Writing assignments, including note taking and written recall, should enhance retention of knowledge, whereas analytical writing tasks with metacognitive aspects should enhance higher-order thinking. In this study, we assessed how certain writing-intensive “interventions,” such as written exam corrections and peer-reviewed writing assignments using Calibrated Peer Review and including a metacognitive component, improve student learning. We designed and tested the possible benefits of these approaches using control and experimental variables across and between our three-section introductory biology course. Based on assessment, students who corrected exam questions showed significant improvement on postexam assessment compared with their nonparticipating peers. Differences were also observed between students participating in written and discussion-based exercises. Students with low ACT scores benefited equally from written and discussion-based exam corrections, whereas students with midrange to high ACT scores benefited more from written than discussion-based exam corrections. Students scored higher on topics learned via peer-reviewed writing assignments relative to learning in an active classroom discussion or traditional lecture. However, students with low ACT scores (17–23) did not show the same benefit from peer-reviewed written essays as the other students. These changes offer significant student learning benefits with minimal additional effort by the instructors

    An Engineered Nonsense \u3cem\u3eURA3\u3c/em\u3e Allele Provides a Versatile System to Detect the Presence, Absence and Appearance of the [em\u3ePSI\u3c/em\u3e\u3csup\u3e+\u3c/sup\u3e] Prion in \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e

    Get PDF
    Common methods to identify yeast cells containing the prion form of the Sup35 translation termination factor, [PSI+], involve a nonsense suppressor phenotype. Decreased function of Sup35p in [PSI+] cells leads to readthrough of certain nonsense mutations in a few auxotrophic markers, for example, ade1-14. This readthrough results in growth on adenine deficient media. While this powerful tool has dramatically facilitated the study of [PSI+], it is limited to a narrow range of laboratory strains and cannot easily be used to screen for cells that have lost the [PSI+] prion. Therefore we have engineered a nonsense mutation in the widely used URA3 gene, termed the ura3-14 allele. Introduction of the ura3-14 allele into an array of genetic backgrounds, carrying a loss-of-function URA3 mutation and [PSI+], allows for growth on media lacking uracil, indicative of decreased translational termination efficiency. This ura3-14 allele is able to distinguish various forms of the [PSI+] prion, called variants and is able to detect the de novo appearance of [PSI+] in strains carrying the prion form of Rnq1p, [PIN+]. Furthermore, 5-fluoorotic acid, which kills cells making functional Ura3p, provides a means to select for [psi−] derivatives in a population of [PSI+] cells marked with the ura3-14 allele, making this system much more versatile than previous methods

    The N-terminal Prodomain of sV23 is Essential for the Assembly of a Functional Vitelline Membrane Network in \u3cem\u3eDrosophila\u3c/em\u3e

    Get PDF
    The vitelline membrane is a specialized extracellular matrix that surrounds and protects the oocyte. Recent studies indicate that it also serves as a storage site for embryonic pattern determinants. sV23, a major vitelline membrane protein, is essential for the morphogenesis of the vitelline membrane as sV23 protein null mutants lay flaccid, infertile eggs. By analyzing a series of sV23 mutant transgenes in the sV23 protein null genetic background, we have shown that sV23 is secreted as a proprotein in functional excess and that C- and N-terminal prodomains are removed successively, following its deposition in the extracellular space. Although a target site for subtilisin-like convertases is essential for N-terminal processing, N-terminal processing is not necessary for the assembly of a functional vitelline membrane layer. While C-terminal truncations were tolerated, the removal of N-terminal sequences lead to the production of flaccid, infertile eggs with a soluble, rather than insoluble, vitelline membrane network. We propose that the hydrophobic N-terminal prodomain plays an early and essential role in aligning molecules within the vitelline membrane network, much like hydrophobic domains within elastin drive the assembly and alignment of molecules within elastin-based extracellular matrices

    \u3cem\u3eDrosophila\u3c/em\u3e Vitelline Membrane Assembly: A Critical Role for an Evolutionarily Conserved Cysteine in the “VM domain” of sV23

    Get PDF
    The vitelline membrane (VM), the oocyte proximal layer of the Drosophila eggshell, contains four major proteins (VMPs) that possess a highly conserved “VM domain” which includes three precisely spaced, evolutionarily conserved, cysteines (CX7CX8C). Focusing on sV23, this study showed that the three cysteines are not functionally equivalent. While substitution mutations at the first (C123S) or third (C140S) cysteines were tolerated, females with a substitution at the second position (C131S) were sterile. Fractionation studies showed that sV23 incorporates into a large disulfide linked network well after its secretion ceases, suggesting that post-depositional mechanisms are in place to restrict disulfide bond formation until late oogenesis, when the oocyte no longer experiences large volume increases. Affinity chromatography utilizing histidine tagged sV23 alleles revealed small sV23 disulfide linked complexes during the early stages of eggshell formation that included other VMPs, namely sV17 and Vml. The early presence but late loss of these associations in an sV23 double cysteine mutant suggests that reorganization of disulfide bonds may underlie the regulated growth of disulfide linked networks in the vitelline membrane. Found within the context of a putative thioredoxin active site (CXXS) C131, the critical cysteine in sV23, may play an important enzymatic role in isomerizing intermolecular disulfide bonds during eggshell assembly

    \u3cem\u3eDe Novo\u3c/em\u3e [PSI\u3csup\u3e+\u3c/sup\u3e] Prion Formation Involves Multiple Pathways to Form Infectious Oligomers

    Get PDF
    Prion and other neurodegenerative diseases are associated with misfolded protein assemblies called amyloid. Research has begun to uncover common mechanisms underlying transmission of amyloids, yet how amyloids form in vivo is still unclear. Here, we take advantage of the yeast prion, [PSI +], to uncover the early steps of amyloid formation in vivo. [PSI +] is the prion form of the Sup35 protein. While [PSI +] formation is quite rare, the prion can be greatly induced by overexpression of the prion domain of the Sup35 protein. This de novo induction of [PSI +] shows the appearance of fluorescent cytoplasmic rings when the prion domain is fused with GFP. Our current work shows that de novoinduction is more complex than previously thought. Using 4D live cell imaging, we observed that fluorescent structures are formed by four different pathways to yield [PSI +] cells. Biochemical analysis of de novo induced cultures indicates that newly formed SDS resistant oligomers change in size over time and lysates made from de novo induced cultures are able to convert [psi −] cells to [PSI +] cells. Taken together, our findings suggest that newly formed prion oligomers are infectious

    Most, but not All, Yeast Strains in the Deletion Library Contain the [PIN+] Prion

    Get PDF
    The yeast deletion library is a collection of over 5100 single gene deletions that has been widely used by the yeast community. The presence of a non-Mendelian element, such as a prion, within this library could affect the outcome of many large-scale genomic studies. We previously showed that the deletion library parent strain contained the [PIN+] prion. [PIN+] is the misfolded infectious prion form of the Rnq1 protein that displays distinct fluorescent foci in the presence of RNQ1–GFP and exists in different physical conformations, called variants. Here, we show that over 97% of the library deletion strains are [PIN+]. Of the 141 remaining strains that have completely (58) or partially (83) lost [PIN+], 139 deletions were able to efficiently maintain three different [PIN+] variants despite extensive growth and storage at 4 °C. One strain, cue2Δ, displayed an alteration in the RNQ1–GFP fluorescent shape, but the Rnq1p prion aggregate shows no biochemical differences from the wild-type. Only strains containing a deletion of either HSP104 or RNQ1 are unable to maintain [PIN+], indicating that 5153 non-essential genes are not required for [PIN+] propagation. Copyright © 2009 John Wiley & Sons, Ltd

    Implications of the Actin Cytoskeleton on the Multi-Step Process of [ PSI+] Prion Formation

    Get PDF
    Yeast prions are self-perpetuating misfolded proteins that are infectious. In yeast, [PSI+] is the prion form of the Sup35 protein. While the study of [PSI+] has revealed important cellular mechanisms that contribute to prion propagation, the underlying cellular factors that influence prion formation are not well understood. Prion formation has been described as a multi-step process involving both the initial nucleation and growth of aggregates, followed by the subsequent transmission of prion particles to daughter cells. Prior evidence suggests that actin plays a role in this multi-step process, but actin’s precise role is unclear. Here, we investigate how actin influences the cell’s ability to manage newly formed visible aggregates and how actin influences the transmission of newly formed aggregates to future generations. At early steps, using 3D time-lapse microscopy, several actin mutants, and Markov modeling, we find that the movement of newly formed aggregates is random and actin independent. At later steps, our prion induction studies provide evidence that the transmission of newly formed prion particles to daughter cells is limited by the actin cytoskeletal network. We suspect that this limitation is because actin is used to possibly retain prion particles in the mother cell

    The yeast molecular chaperone, Hsp104, influences transthyretin aggregate formation

    Get PDF
    Patients with the fatal disorder Transthyretin Amyloidosis (ATTR) experience polyneuropathy through the progressive destruction of peripheral nervous tissue. In these patients, the transthyretin (TTR) protein dissociates from its functional tetrameric structure, misfolds, and aggregates into extracellular amyloid deposits that are associated with disease progression. These aggregates form large fibrillar structures as well as shorter oligomeric aggregates that are suspected to be cytotoxic. Several studies have shown that these extracellular TTR aggregates enter the cell and accumulate intracellularly, which is associated with increased proteostasis response. However, there are limited experimental models to study how proteostasis influences internalized TTR aggregates. Here, we use a humanized yeast system to recapitulate intracellular TTR aggregating protein in vivo. The yeast molecular chaperone Hsp104 is a disaggregase that has been shown to fragment amyloidogenic aggregates associated with certain yeast prions and reduce protein aggregation associated with human neurogenerative diseases. In yeast, we found that TTR forms both SDS-resistant oligomers and SDS-sensitive large molecular weight complexes. In actively dividing cultures, Hsp104 has no impact on oligomeric or large aggregate populations, yet overexpression of Hsp104 is loosely associated with an increase in overall aggregate size. Interestingly, a potentiating mutation in the middle domain of Hsp104 consistently results in an increase in overall TTR aggregate size. These data suggest a novel approach to aggregate management, where the Hsp104 variant shifts aggregate populations away from toxic oligomeric species to more inert larger aggregates. In aged cultures Hsp104 overexpression has no impact on TTR aggregation profiles suggesting that these chaperone approaches to shift aggregate populations are not effective with age, possibly due to proteostasis decline

    Prion Formation and Polyglutamine Aggregation Are Controlled by Two Classes of Genes

    Get PDF
    Prions are self-perpetuating aggregated proteins that are not limited to mammalian systems but also exist in lower eukaryotes including yeast. While much work has focused around chaperones involved in prion maintenance, including Hsp104, little is known about factors involved in the appearance of prions. De novo appearance of the [PSI+] prion, which is the aggregated form of the Sup35 protein, is dramatically enhanced by transient overexpression of SUP35 in the presence of the prion form of the Rnq1 protein, [PIN+]. When fused to GFP and overexpressed in [ps−] [PIN+] cells, Sup35 forms fluorescent rings, and cells with these rings bud off [PSI+] daughters. We investigated the effects of over 400 gene deletions on this de novo induction of [PSI+]. Two classes of gene deletions were identified. Class I deletions (bug1Δ, bem1Δ, arf1Δ, and hog1Δ) reduced the efficiency of [PSI+] induction, but formed rings normally. Class II deletions (las17Δ, vps5Δ, and sac6Δ) inhibited both [PSI+] induction and ring formation. Furthermore, class II deletions reduced, while class I deletions enhanced, toxicity associated with the expanded glutamine repeats of the huntingtin protein exon 1 that causes Huntington's disease. This suggests that prion formation and polyglutamine aggregation involve a multi-phase process that can be inhibited at different steps.National Institutes of Health (U.S.) (grant GM56350)National Institutes of Health (U.S.) (NSRA F32 postdoctoral fellowship GM072340)National Institutes of Health (U.S.) (grant GM25874)Howard Hughes Medical Institut
    corecore