110 research outputs found

    Improved long-term performance of pulsatile extracorporeal left ventricular assist device

    Get PDF
    SummaryBackground and purposeThe majority of heart transplant (HTx) candidates require left ventricular assist device (LVAD) support for more than 2 years before transplantation in Japan. However, the only currently available device is the extracorporeal pulsatile LVAD. The long-term management of extracorporeal LVAD support has improved remarkably over the years. To determine which post-operative management factors are related to the long-term survival of patients on such LVAD, we retrospectively compared the incidence of complications and their management strategies between the initial and recent eras of LVAD use, classified by the year of LVAD surgery.MethodsSixty-nine consecutive patients supported by extracorporeal pulsatile LVAD as a bridge to HTx between 1994 and 2007 were reviewed retrospectively. The patients were assigned according to the time of LVAD surgery to either group A (n=30; between 1994 and 2000) or group B (n=39; between 2001 and 2007).ResultsPatients in group B survived significantly longer on LVAD support than those in group A (674.6 vs. 369.3 days; p<0.001). The 1- and 2-year survival rates were significantly higher in group B than that in group A (82% vs. 48%, p<0.0001; 68% vs. 23%, p<0.0001, respectively). The proportion of deaths due to cerebrovascular accidents was lower (17% vs. 50%, p<0.001) in group B compared with group A. The incidences of systemic infection were similar in both groups, but the proportions of patients alive and achieving transplant surgery after systemic infection were higher in group B than those in group A (55% vs. 14%, p<0.01; 14% vs. 36%, p<0.05, respectively).ConclusionsThe long-term survival of patients even on “first-generation” extracorporeal LVAD has improved significantly in the recent era. Careful management of cerebrovascular accidents and systemic infection will play important roles in the long-term LVAD management

    miR-378a-3p modulates tamoxifen sensitivity in breast cancer MCF-7 cells through targeting GOLT1A

    Get PDF
    Breast cancer is a hormone-dependent cancer and usually treated with endocrine therapy using aromatase inhibitors or anti-estrogens such as tamoxifen. A majority of breast cancer, however, will often fail to respond to endocrine therapy. In the present study, we explored miRNAs associated with endocrine therapy resistance in breast cancer. High-throughput miRNA sequencing was performed using RNAs prepared from breast cancer MCF-7 cells and their derivative clones as endocrine therapy resistant cell models, including tamoxifen-resistant (TamR) and long-term estrogen-deprived (LTED) MCF-7 cells. Notably, miR-21 was the most abundantly expressed miRNA in MCF-7 cells and overexpressed in TamR and LTED cells. We found that miR-378a-3p expression was downregulated in TamR and LTED cells as well as in clinical breast cancer tissues. Additionally, lower expression levels of miR-378a-3p were associated with poor prognosis for tamoxifen-treated patients with breast cancer. GOLT1A was selected as one of the miR-378a-3p candidate target genes by in silico analysis. GOLT1A was overexpressed in breast cancer specimens and GOLT1A-specific siRNAs inhibited the growth of TamR cells. Low GOLT1A levels were correlated with better survival in patients with breast cancer. These results suggest that miR-378a-3p-dependent GOLT1A expression contributes to the mechanisms underlying breast cancer endocrine resistance

    Mutation Analysis of 2009 Pandemic Influenza A(H1N1) Viruses Collected in Japan during the Peak Phase of the Pandemic

    Get PDF
    BACKGROUND: Pandemic influenza A(H1N1) virus infection quickly circulated worldwide in 2009. In Japan, the first case was reported in May 2009, one month after its outbreak in Mexico. Thereafter, A(H1N1) infection spread widely throughout the country. It is of great importance to profile and understand the situation regarding viral mutations and their circulation in Japan to accumulate a knowledge base and to prepare clinical response platforms before a second pandemic (pdm) wave emerges. METHODOLOGY: A total of 253 swab samples were collected from patients with influenza-like illness in the Osaka, Tokyo, and Chiba areas both in May 2009 and between October 2009 and January 2010. We analyzed partial sequences of the hemagglutinin (HA) and neuraminidase (NA) genes of the 2009 pdm influenza virus in the collected clinical samples. By phylogenetic analysis, we identified major variants of the 2009 pdm influenza virus and critical mutations associated with severe cases, including drug-resistance mutations. RESULTS AND CONCLUSIONS: Our sequence analysis has revealed that both HA-S220T and NA-N248D are major non-synonymous mutations that clearly discriminate the 2009 pdm influenza viruses identified in the very early phase (May 2009) from those found in the peak phase (October 2009 to January 2010) in Japan. By phylogenetic analysis, we found 14 micro-clades within the viruses collected during the peak phase. Among them, 12 were new micro-clades, while two were previously reported. Oseltamivir resistance-related mutations, i.e., NA-H275Y and NA-N295S, were also detected in sporadic cases in Osaka and Tokyo

    HCM

    No full text

    Current Perspective on Hemodialysis Patients with Peripheral Artery Disease

    No full text
    corecore