477 research outputs found
An x-ray resonant diffraction study of multiferroic DyMn2O5
X-ray resonant scattering has been used to measure the magnetic order of the
Dy ions below 40K in multiferroic DyMnO. The magnetic order has a
complex behaviour. There are several different ordering wavevectors, both
incommensurate and commensurate, as the temperature is varied. In addition a
non-magnetic signal at twice the wavevector of one of the commensurate signals
is observed, the maximum intensity of which occurs at the same temperature as a
local maximum in the ferroelectric polarisation. Some of the results, which
bear resemblence to the behaviour of other members of the RMnO
family of multiferroic materials, may be explained by a theory based on
so-called acentric spin-density waves.Comment: 8 pages, 8 figure
Detection of Neutron Scattering from Phase IV of Ce0.7La0.3B6: A Confirmation of the Octupole Order
We have performed a single crystal neutron scattering experiment on
Ce0.7La0.3B6 to investigate the order parameter of phase IV microscopically.
Below the phase transition temperature 1.5 K of phase IV, weak but distinct
superlattice reflections at the scattering vector (h/2,h/2,l/2) (h, l = odd
number) have been observed by neutron scattering for the first time. The
intensity of the superlattice reflections is stronger for high scattering
vectors, which is quite different from the usual magnetic form factor of
magnetic dipoles. This result directly evidences that the order parameter of
phase IV has a complex magnetization density, consistent with the recent
experimental and theoretical prediction in which the order parameter is the
magnetic octupoles Tbeta with Gamma5 symmetry of point group Oh. Neutron
scattering experiments using short wavelength neutrons, as done in this study,
could become a general method to study the high-rank multipoles in f electron
systems.Comment: 4 pages, 4 figure
Toward Identification of Order Parameters in Skutterudites - a Wonderland of Strong Correlation Physics -
Current status is described toward identifying unconventional order
parameters in filled skutterudites with unique ordering phenomena. The order
parameters in PrFeP and PrRuP are discussed in relation
to associated crystalline electric field (CEF) states and angular form factors.
By phenomenological Landau analysis, it is shown that a scalar order model
explains most properties in both PrFeP and PrRuP with
very different magnetic properties. In particular, the highly anisotropic
susceptibility induced by uniaxial pressure in PrFeP is explained in
terms of two types of couplings. In the case of SmRuP, the main
order parameter at low field is identified as magnetic octupoles. A microscopic
mechanism is proposed how the dipole and octupole degrees of freedom mix under
the point group of skutterudites.Comment: To be published in Proc. International Conference on New Quantum
Phenomena in Skutterudite and Related Systems (Suppl. J. Phys. Soc. Jpn 78,
2008
Satellite holmium M-edge spectra from the magnetic phase via resonant x-ray scattering
Developing an expression of resonant x-ray scattering (RXS) amplitude which
is convenient for investigating the contributions from the higher rank tensor
on the basis of a localized electron picture, we analyze the RXS spectra from
the magnetic phases of Ho near the absorption edges. At the
edge in the uniform helical phase, the calculated spectra of the absorption
coefficient, the RXS intensities at the first and second satellite spots
capture the properties the experimental data possess, such as the spectral
shapes and the peak positions. This demonstrates the plausibility of the
adoption of the localized picture in this material and the effectiveness of the
spectral shape analysis. The latter point is markedly valuable since the
azimuthal angle dependence, which is one of the most useful informations RXS
can provides, is lacking in the experimental conditions. Then, by focusing on
the temperature dependence of the spectral shape at the second satellite spot,
we expect that the spectrum is the contribution of the pure rank two profile in
the uniform helical and the conical phases while that is dominated by the rank
one profile in the intermediate temperature phase, so-called spin slip phase.
The change of the spectral shape as a function of temperature indicates a
direct evidence of the change of magnetic structures undergoing. Furthermore,
we predict that the intensity, which is the same order observed at the second
satellite spot, is expected at the fourth satellite spot from the conical phase
in the electric dipolar transition.Comment: 24 pages, 5 figure
Evidence for Octupole Order in CeLaB from Resonant X-ray Scattering
The azimuthal angle dependence observed in the resonant X-ray scattering in
phase IV of CeLaB is analyzed theoretically. It is shown
that the peculiar angle dependence observed in the E2 channel is consistent
with the Gamma_{5u}-type octupole order with principal axis along (111) and
equivalent directions. Under the assumption that the four equivalent octupole
domains are nearly equally populated in the sample, the observed angle
dependences are reproduced by calculation for both sigma-sigma' and sigma-pi'
polarizations. The calculation for various symmetries of order parameters
excludes unambiguously other order parameters than the Gamma_{5u}-type
octupole.Comment: 4 pages, 2 figures, 3 tables, in JPSJ forma
Multipole correlations in low-dimensional f-electron systems
By using a density matrix renormalization group method, we investigate the
ground-state properties of a one-dimensional three-orbital Hubbard model on the
basis of a j-j coupling scheme. For , where is a parameter
to control cubic crystalline electric field effect, one orbital is itinerant,
while other two are localized. Due to the competition between itinerant and
localized natures, we obtain orbital ordering pattern which is sensitive to
, leading to a characteristic change of quadrupole state
into an incommensurate structure. At , all the three orbitals are
degenerate, but we observe a peak at in quadrupole
correlation, indicating a ferro-orbital state, and the peak at in
dipole correlation, suggesting an antiferromagnetic state. We
also discuss the effect of octupole on magnetic anisotropy.Comment: 4 pages, 3 figures, Proceedings of ASR-WYP-2005 (September 27-29,
2005, Tokai
Resonant magnetic x-ray and neutron diffuse studies of transition metal multilayers
Electron scattering mechanisms within metallic multilayers are affected by both structural and magnetic disorders. Off-specular x-ray scattering has long been used to probe the structural interfaces, and it is only recently that it has been applied to the study of magnetic disorder. We compare the resonant magnetic x-ray scattering with off-specular neutron studies from magnetron-sputtered Co/Cu and Co/Ru multilayers grown at the second antiferromagnetic coupling peak. Both techniques yield similar results for the Cu system, and a simple domain model can be applied to extract the magnetic interface morphological parameters. For the Cu system, the in-plane correlation length is field dependent and is 880+/-20 Ã… after saturation along the hard axis, but increases to 7000+/-100 Ã… after saturation along the orthogonal easy axis. Both systems show strong out-of-plane correlations in both the structural and magnetic disorders. In all cases, the out-of-plane correlation length for the structural interfaces is 200-250 Ã…, but the ratio of the magnetic to structural correlations length is dependent on the magnitude of the exchange coupling and ranges from 0.4 to 1.4.
Prediction of huge X-ray Faraday rotation at the Gd N_4,5 threshold
X-ray absorption spectra in a wide energy range around the 4d-4f excitation
threshold of Gd were recorded by total electron yield from in-plane magnetized
Gd metal films. Matching the experimental spectra to tabulated absorption data
reveals unprecedented short light absorption lengths down to 3 nm. The
associated real parts of the refractive index for circularly polarized light
propagating parallel or antiparallel to the Gd magnetization, determined
through the Kramers-Kronig transformation, correspond to a magneto-optical
Faraday rotation of 0.7 degrees per atomic layer. This finding shall allow the
study of magnetic structure and magnetization dynamics of lanthanide elements
in nanosize systems and dilute alloys.Comment: 4 pages, 2 figures, final version resubmitted to Phys. Rev. B, Brief
Reports. Minor change
Enteral lactoferrin supplementation for very preterm infants: a randomised placebo-controlled trial
Background
Infections acquired in hospital are an important cause of morbidity and mortality in very preterm infants. Several small trials have suggested that supplementing the enteral diet of very preterm infants with lactoferrin, an antimicrobial protein processed from cow's milk, prevents infections and associated complications. The aim of this large randomised controlled trial was to collect data to enhance the validity and applicability of the evidence from previous trials to inform practice.
Methods
In this randomised placebo-controlled trial, we recruited very preterm infants born before 32 weeks' gestation in 37 UK hospitals and younger than 72 h at randomisation. Exclusion criteria were presence of a severe congenital anomaly, anticipated enteral fasting for longer than 14 days, or no realistic prospect of survival. Eligible infants were randomly assigned (1:1) to receive either enteral bovine lactoferrin (150 mg/kg per day; maximum 300 mg/day; lactoferrin group) or sucrose (same dose; control group) once daily until 34 weeks' postmenstrual age. Web-based randomisation minimised for recruitment site, gestation (completed weeks), sex, and single versus multifetal pregnancy. Parents, caregivers, and outcome assessors were unaware of group assignment. The primary outcome was microbiologically confirmed or clinically suspected late-onset infection (occurring >72 h after birth), which was assessed in all participants for whom primary outcome data was available by calculating the relative risk ratio with 95% CI between the two groups. The trial is registered with the International Standard Randomised Controlled Trial Number 88261002.
Findings
We recruited 2203 participants between May 7, 2014, and Sept 28, 2017, of whom 1099 were assigned to the lactoferrin group and 1104 to the control group. Four infants had consent withdrawn or unconfirmed, leaving 1098 infants in the lactoferrin group and 1101 in the sucrose group. Primary outcome data for 2182 infants (1093 [99·5%] of 1098 in the lactoferrin group and 1089 [99·0] of 1101 in the control group) were available for inclusion in the modified intention-to-treat analyses. 316 (29%) of 1093 infants in the intervention group acquired a late-onset infection versus 334 (31%) of 1089 in the control group. The risk ratio adjusted for minimisation factors was 0·95 (95% CI 0·86–1·04; p=0·233). During the trial there were 16 serious adverse events for infants in the lactoferrin group and 10 for infants in the control group. Two events in the lactoferrin group (one case of blood in stool and one death after intestinal perforation) were assessed as being possibly related to the trial intervention.
Interpretation
Enteral supplementation with bovine lactoferrin does not reduce the risk of late-onset infection in very preterm infants. These data do not support its routine use to prevent late-onset infection and associated morbidity or mortality in very preterm infants.
Funding
UK National Institute for Health Research Health Technology Assessment programme (10/57/49)
- …