2,234 research outputs found

    A review of the role of ultrasound biomicroscopy in glaucoma associated with rare diseases of the anterior segment

    Get PDF
    Ultrasound biomicroscopy is a non-invasive imaging technique, which allows high-resolution evaluation of the anatomical features of the anterior segment of the eye regardless of optical media transparency. This technique provides diagnostically significant information in vivo for the cornea, anterior chamber, chamber angle, iris, posterior chamber, zonules, ciliary body, and lens, and is of great value in assessment of the mechanisms of glaucoma onset. The purpose of this paper is to review the use of ultrasound biomicroscopy in the diagnosis and management of rare diseases of the anterior segment such as mesodermal dysgenesis of the neural crest, iridocorneal endothelial syndrome, phakomatoses, and metabolic disorders

    Torts -- Police Immunity -- Civil Rights Arrests

    Get PDF

    In silico identification of small molecules as new cdc25 inhibitors through the correlation between chemosensitivity and protein expression pattern

    Get PDF
    The cell division cycle 25 (Cdc25) protein family plays a crucial role in controlling cell proliferation, making it an excellent target for cancer therapy. In this work, a set of small molecules were identified as Cdc25 modulators by applying a mixed ligand-structure-based approach and taking advantage of the correlation between the chemosensitivity of selected structures and the protein expression pattern of the proposed target. In the first step of the in silico protocol, a set of molecules acting as Cdc25 inhibitors were identified through a new ligand-based protocol and the evaluation of a large database of molecular structures. Subsequently, induced-fit docking (IFD) studies allowed us to further reduce the number of compounds biologically screened. In vitro antiproliferative and enzymatic inhibition assays on the selected compounds led to the identification of new structurally heterogeneous inhibitors of Cdc25 proteins. Among them, J3955, the most active inhibitor, showed concentration-dependent antiproliferative activity against HepG2 cells, with GI50 in the low micromolar range. When J3955 was tested in cell-cycle perturbation experiments, it caused mitotic failure by G2/M-phase cell-cycle arrest. Finally, Western blotting analysis showed an increment of phosphorylated Cdk1 levels in cells exposed to J3955, indicating its specific influence in cellular pathways involving Cdc25 proteins

    Insulin-like growth factor-1 is a negative modulator of glucagon secretion

    Get PDF
    Glucagon secretion involves a combination of paracrine, autocrine, hormonal, and autonomic neural mechanisms. Type 2 diabetes often presents impaired glucagon suppression by insulin and glucose. Insulin-like growth factor-I (IGF-1) has elevated homology with insulin, and regulates pancreatic β-cells insulin secretion. Insulin and IGF-1 receptors share considerable structure homology and function. We hypothesized the existence of a mechanism linking the inhibition of α-cells glucagon secretion to IGF-1. Herein, we evaluated the association between plasma IGF-1 and glucagon levels in 116 nondiabetic adults. After adjusting for age gender and BMI, fasting glucagon levels were positively correlated with 2-h post-load glycaemia, HOMA index and fasting insulin, and were negatively correlated with IGF-1 levels. In a multivariable regression, the variables independently associated to fasting glucagon were circulating IGF-1 levels, HOMA index and BMI, explaining 20.7% variation. To unravel the molecular mechanisms beneath IGF-1 and glucagon association, we investigated whether IGF-1 directly modulates glucagon expression and secretion in an in vitro model of α-cells. Our data showed that IGF-1 inhibits the ability of low glucose concentration to stimulate glucagon expression and secretion via activation of the phosphatidylinositol-3-kinase/Akt/FoxO1 pathway. Collectively, our results suggest a new regulatory role of IGF-1 on α-cells biological function

    Citizens and scientists work together to monitor marine alien macrophytes

    Get PDF
    The introduction of non-indigenous species (NIS) is an ongoing phenomenon which has been pointed out as a major threat to biodiversity at different levels. NIS may in time become invasive (Invasive Alien Species “IAS”) and may cause biodiversity loss and ecosystem service changes. The Mediterranean Sea is an important hotspot for marine NIS (ca. 1,000 such species recorded to date. To reduce the risk of future IAS introduction and to better understand their invasive potential and spread dynamics, monitoring and surveillance plans are required. The creation of permanent alarm systems and public awareness campaigns are crucial for reducing the risk of IAS introduction. Since intensive monitoring programs could be very expensive, citizen science, involving citizens (e.g. tourists, fishermen, divers) in the collection of data, could be a useful tool for providing data on IAS, that would otherwise be impossible to collect because of limitations on time and resources. Citizen science is having an increasing success worldwide. Citizen science projects has rapidly and enormously increased in recent years, also thanks to the wide availability of mobile technologies and internet access that enable an easy and cheap way to communicate, share and interchange data. The value of citizen science has been widely recognized. Of course, in order to be used for scientific purposes and management decisions, the collected data need appropriate quality assurance measures such as validation and verification by taxonomic experts. We report on the experience of two citizen science projects: the Project “Caulerpa cylindracea – Egadi Islands” and the Project “Invasive Algae”, included within the “Seawatchers” platform

    Tracking Marine Alien Macroalgae in the Mediterranean Sea: The Contribution of Citizen Science and Remote Sensing

    Get PDF
    The accelerating rate of the introduction of non-indigenous species (NIS) and the magnitude of shipping traffic make the Mediterranean Sea a hotspot of biological invasions. For the effective management of NIS, early detection and intensive monitoring over time and space are essential. Here, we present an overview of possible applications of citizen science and remote sensing in monitoring alien seaweeds in the Mediterranean Sea. Citizen science activities, involving the public (e.g., tourists, fishermen, divers) in the collection of data, have great potential for monitoring NIS. The innovative methodologies, based on remote sensing techniques coupled with in situ/laboratory advanced sampling/analysis methods for tracking such species, may be useful and effective tools for easily assessing NIS distribution patterns and monitoring the space/time changes in habitats in order to support the sustainable management of the ecosystems. The reported case studies highlight how these cost-effective systems can be useful complementary tools for monitoring NIS, especially in marine protected areas, which, despite their fundamental role in the conservation of marine biodiversity, are not immune to the introduction of NIS. To ensure effective and long-lasting management strategies, collaborations between researchers, policy makers and citizens are essential

    The Effects of Non-Indigenous Macrophytes on Native Biodiversity: Case Studies from Sicily

    Get PDF
    Biological invasions are widely recognized as a major threat to native biodiversity, ecosys tem functioning and services. Non-indigenous species (NIS) may in time become invasive (invasive alien species (IAS)), determining significant environmental, socioeconomic and human health impacts such as biodiversity loss and ecosystem service degradation. The Mediterranean islands, particu larly Sicily and the circum-Sicilian islands (northwestern Mediterranean Sea), which are important hotspots of biodiversity, are notably vulnerable to anthropogenic pressures such as biological in vasions. Therefore, monitoring NIS distribution as well as understanding their effects on native biodiversity is critical in these areas for planning effective conservation strategies. Here, we report four different case studies from Sicily that highlight how NIS may affect native biodiversity and habitats. The first three case studies were carried out within Marine Protected Areas (MPAs) and highlight (1) the ability of Caulerpa cylindracea to promote the establishment of other NIS, including biofouling worms belonging to the genus Branchiomma; (2) how the shift in habitat from the native Ericaria brachycarpa to the invasive Asparagopsis taxiformis may drastically erode the primary producer biomass and associated biodiversity; and (2) that the presence of Lophocladia lallemandii can affect the molluscan assemblage inhabiting the canopy-forming Gongolaria montagnei. The fourth case study, performed along the northwestern coast of Sicily, shows how Halophila stipulacea can affect the growth of the co-occurring native seagrass Cymodocea nodosa. Overall, these case studies demonstrate various ways in which NIS can interact with native biodiversity and habitats. Furthermore, they emphasize that MPAs are ineffective at preventing the introduction and spread of NIS
    • …
    corecore