76 research outputs found

    Improving genetic diagnostics of skeletal muscle channelopathies

    Get PDF
    Introduction: Skeletal muscle channelopathies are rare inherited conditions that cause significant morbidity and impact on quality of life. Some subsets have a mortality risk. Improved genetic methodology and understanding of phenotypes has improved diagnostic accuracy and yield. Areas covered: We discuss diagnostic advances since the advent of next generation sequencing and the role of whole exome and genome sequencing. Advances in genotype-phenotype-functional correlations have improved understanding of inheritance and phenotypes. We outline new phenotypes, particularly in the paediatric setting and consider co-existing mutations that may act as genetic modifiers. We also discuss four newly identified genes associated with skeletal muscle channelopathies. Expert Opinion/Commentary: Next generation sequencing using gene panels has improved diagnostic rates, identified new mutations and discovered patients with co-existing pathogenic mutations (“double trouble”). This field has previously focussed on single genes, but we are now beginning to understand interactions between co-existing mutations, genetic modifiers and their role in pathomechanisms. New genetic observations in paediatric presentations of channelopathies broadens our understanding of the conditions. Genetic and mechanistic advances have increased potential to develop treatments

    Maternal and infant prediction of the child BMI trajectories; studies across two generations of Northern Finland birth cohorts

    Get PDF
    Background/objective Children BMI is a longitudinal phenotype, developing through interplays between genetic and environmental factors. Whilst childhood obesity is escalating, we require a better understanding of its early origins and variation across generations to prevent it. Subjects/methods We designed a cross-cohort study including 12,040 Finnish children from the Northern Finland Birth Cohorts 1966 and 1986 (NFBC1966 and NFBC1986) born before or at the start of the obesity epidemic. We used group-based trajectory modelling to identify BMI trajectories from 2 to 20 years. We subsequently tested their associations with early determinants (mother and child) and the possible difference between generations, adjusted for relevant biological and socioeconomic confounders. Results We identified four BMI trajectories, ‘stable-low’ (34.8%), ‘normal’ (44.0%), ‘stable-high’ (17.5%) and ‘early-increase’ (3.7%). The ‘early-increase’ trajectory represented the highest risk for obesity. We analysed a dose-response association of maternal pre-pregnancy BMI and smoking with BMI trajectories. The directions of effect were consistent across generations and the effect sizes tended to increase from earlier generation to later. Respectively for NFBC1966 and NFBC1986, the adjusted risk ratios of being in the early-increase group were 1.08 (1.06–1.10) and 1.12 (1.09–1.15) per unit of pre-pregnancy BMI and 1.44 (1.05–1.96) and 1.48 (1.17–1.87) in offspring of smoking mothers compared to non-smokers. We observed similar relations with infant factors including birthweight for gestational age and peak weight velocity. In contrast, the age at adiposity peak in infancy was associated with the BMI trajectories in NFBC1966 but did not replicate in NFBC1986. Conclusions Exposures to adverse maternal predictors were associated with a higher risk obesity trajectory and were consistent across generations. However, we found a discordant association for the timing of adiposity peak over a 20-year period. This suggests the role of residual environmental factors, such as nutrition, and warrants additional research to understand the underlying gene–environment interplay

    De novo KCNA2 mutations cause hereditary spastic paraplegia

    Get PDF

    Possible role of SCN4A skeletal muscle mutation in apnoea during seizure

    Get PDF
    SCN4A gene mutations cause a number of neuromuscular phenotypes including myotonia. A subset of infants with myotonia‐causing mutations experience severe life‐threatening episodic laryngospasm with apnea. We have recently identified similar SCN4A mutations in association with sudden infant death syndrome. Laryngospasm has also been proposed as a contributory mechanism to some cases of sudden unexpected death in epilepsy (SUDEP). We report an infant with EEG‐confirmed seizures and recurrent apneas. Whole‐exome sequencing identified a known pathogenic mutation in the SCN4A gene that has been reported in several unrelated families with myotonic disorder. We propose that the SCN4A mutation contributed to the apneas in our case, irrespective of the underlying cause of the epilepsy. We suggest this supports the notion that laryngospasm may contribute to some cases of SUDEP, and implicates a possible shared mechanism between a proportion of sudden infant deaths and sudden unexpected deaths in epilepsy

    Ageing contributes to phenotype transition in a mouse model of periodic paralysis

    Get PDF
    Background Periodic paralysis (PP) is a rare genetic disorder in which ion channel mutation causes episodic paralysis in association with hyper- or hypokalaemia. An unexplained but consistent feature of PP is that a phenotype transition occurs around the age of 40, in which the severity of potassium-induced muscle weakness declines but onset of fixed, progressive weakness is reported. This phenotype transition coincides with the age at which muscle mass and optimal motor function start to decline in healthy individuals. We sought to determine if the phenotype transition in PP is linked to the normal ageing phenotype transition and to explore the mechanisms involved. Methods A mouse model of hyperkalaemic PP was compared with wild-type littermates across a range of ages (13–104 weeks). Only male mice were used as penetrance is incomplete in females. We adapted the muscle velocity recovery cycle technique from humans to examine murine muscle excitability in vivo. We then examined changes in potassium-induced weakness or caffeine contracture force with age using ex vivo muscle tension testing. Muscles were further characterized by either Western blot, histology or energy charge measurement. For normally distributed data, a student's t-test (± Welch correction) or one- or two-way analysis of variance (ANOVA) was performed to determine significance. For data that were not normally distributed, Welch rank test, Mann Whitney U test or Kruskal–Wallis ANOVA was performed. When an ANOVA was significant (P < 0.05), post hoc Tukey testing was used. Results Both WT (P = 0.009) and PP (P = 0.007) muscles exhibit increased resistance to potassium-induced weakness with age. Our data suggest that healthy-old muscle develops mechanisms to maintain force despite sarcolemmal depolarization and sodium channel inactivation. In contrast, reduced caffeine contracture force (P = 0.00005), skeletal muscle energy charge (P = 0.004) and structural core pathology (P = 0.005) were specific to Draggen muscle, indicating that they are caused, or at least accelerated by, chronic genetic ion channel dysfunction. Conclusions The phenotype transition with age is replicated in a mouse model of PP. Intrinsic muscle ageing protects against potassium-induced weakness in HyperPP mice. However, it also appears to accelerate impairment of sarcoplasmic reticulum calcium release, mitochondrial impairment and the development of core-like regions, suggesting acquired RyR1 dysfunction as the potential aetiology. This work provides a first description of mechanisms involved in phenotype transition with age in PP. It also demonstrates how studying phenotype transition with age in monogenic disease can yield novel insights into both disease physiology and the ageing process itself

    Adjacent mutations in the gating loop of Kir6.2 produce neonatal diabetes and hyperinsulinism

    Get PDF
    K(ATP) channels regulate insulin secretion from pancreatic beta-cells. Loss- and gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of this channel cause hyperinsulinism of infancy and neonatal diabetes, respectively. We report two novel mutations in the gating loop of Kir6.2 which cause neonatal diabetes with developmental delay (T293N) and hyperinsulinism (T294M). These mutations increase (T293N) or decrease (T294M) whole-cell K(ATP) currents, accounting for the different clinical phenotypes. The T293N mutation increases the intrinsic channel open probability (Po((0))), thereby indirectly decreasing channel inhibition by ATP and increasing whole-cell currents. T294M channels exhibit a dramatically reduced Po((0)) in the homozygous but not in the pseudo-heterozygous state. Unlike wild-type channels, hetT294M channels were activated by MgADP in the absence but not in the presence of MgATP; however, they are activated by MgGDP in both the absence and presence of MgGTP. These mutations demonstrate the importance of the gating loop of Kir channels in regulating Po((0)) and further suggest that Mg-nucleotide interaction with SUR1 may reduce ATP inhibition at Kir6.2.We thank the Wellcome Trust (076436/Z/05/Z and 081188/A/06/Z), the Royal Society and the European Union (EuroDia, SHM‐CT‐2006‐518513 and EDICT, 201924) for support. FMA is a Royal Society Research Professor. Brittany Zadek was supported by an OXION studentship and Sarah Flanagan by a Sir Graham Wilkins Research Fellowship

    Congenital myopathy with "corona" fibres, selective muscle atrophy, and craniosynostosis associated with novel recessive mutations in SCN4A

    Get PDF
    We describe two brothers with lower facial weakness, highly arched palate, scaphocephaly due to synostosis of the sagittal and metopic sutures, axial hypotonia, proximal muscle weakness, and mild scoliosis. The muscle MRI of the younger sibling revealed a selective pattern of atrophy of the gluteus maximus, adductor magnus and soleus muscles. Muscle biopsy of the younger sibling revealed myofibres with internalized nuclei, myofibrillar disarray, and “corona” fibres. Both affected siblings were found to be compound heterozygous for c.3425G>A (p.Arg1142Gln) and c.1123T>C (p.Cys375Arg) mutations in SCN4A on exome sequencing, and the parents were confirmed carriers of one of the mutations. Electrophysiological characterization of the mutations revealed the Cys375Arg confers full and Arg1142Gln mild partial loss-of-function. Loss of function of the Nav1.4 channel leads to a decrement of the action potential and subsequent reduction of muscle contraction. The unusual muscle biopsy features suggest a more complex pathomechanism, and broaden the phenotype associated with SCN4A mutations
    corecore