324 research outputs found

    Meta-Analysis of in vitro-Differentiated Macrophages Identifies Transcriptomic Signatures That Classify Disease Macrophages in vivo

    Get PDF
    Macrophages are heterogeneous leukocytes regulated in a tissue- and disease-specific context. While in vitro macrophage models have been used to study diseases empirically, a systematic analysis of the transcriptome thereof is lacking. Here, we acquired gene expression data from eight commonly-used in vitro macrophage models to perform a meta-analysis. Specifically, we obtained gene expression data from unstimulated macrophages (M0) and macrophages stimulated with lipopolysaccharides (LPS) for 2-4 h (M-LPSearly), LPS for 24 h (M-LPSlate), LPS and interferon-gamma (M-LPS+IFN gamma), IFN gamma (M-IFN gamma), interleukin-4 (M-IL4), interleukin-10 (M-IL10), and dexamethasone (M-dex). Our meta-analysis identified consistently differentially expressed genes that have been implicated in inflammatory and metabolic processes. In addition, we built macIDR, a robust classifier capable of distinguishing macrophage activation states with high accuracy (>0.95). We classified in vivo macrophages with macIDR to define their tissue- and disease-specific characteristics. We demonstrate that alveolar macrophages display high resemblance to IL10 activation, but show a drop in IFN gamma signature in chronic obstructive pulmonary disease patients. Adipose tissue-derived macrophages were classified as unstimulated macrophages, but acquired LPS-activation features in diabetic-obese patients. Rheumatoid arthritis synovial macrophages exhibit characteristics of IL10- or IFN gamma-stimulation. Altogether, we defined consensus transcriptional profiles for the eight in vitro macrophage activation states, built a classification model, and demonstrated the utility of the latter for in vivo macrophages

    A genome-wide DNA methylation signature for SETD1B-related syndrome

    Get PDF
    SETD1B is a component of a histone methyltransferase complex that specifically methylates Lys-4 of histone H3 (H3K4) and is responsible for the epigenetic control of chromatin structure and gene expression. De novo microdeletions encompassing this gene as well as de novo missense mutations were previously linked to syndromic intellectual disability (ID). Here, we identify a specific hypermethylation signature associated with loss of function mutations in the SETD1B gene which may be used as an epigenetic marker supporting the diagnosis of syndromic SETD1B-related diseases. We demonstrate the clinical utility of this unique epi-signature by reclassifying previously identified SETD1B VUS (variant of uncertain significance) in two patients

    Monoallelic variants resulting in substitutions of MAB21L1 Arg51 Cause Aniridia and microphthalmia

    Get PDF
    Classical aniridia is a congenital and progressive panocular disorder almost exclusively caused by heterozygous loss-of-function variants at the PAX6 locus. We report nine individuals from five families with severe aniridia and/or microphthalmia (with no detectable PAX6 mutation) with ultrarare monoallelic missense variants altering the Arg51 codon of MAB21L1. These mutations occurred de novo in 3/5 families, with the remaining families being compatible with autosomal dominant inheritance. Mice engineered to carry the p. Arg51Leu change showed a highly-penetrant optic disc anomaly in heterozygous animals with severe microphthalmia in homozygotes. Substitutions of the same codon (Arg51) in MAB21L2, a close homolog of MAB21L1, cause severe ocular and skeletal malformations in humans and mice. The predicted nucleotidyltransferase function of MAB21L1 could not be demonstrated using purified protein with a variety of nucleotide substrates and oligonucleotide activators. Induced expression of GFP-tagged wildtype and mutant MAB21L1 in human cells caused only modest transcriptional changes. Mass spectrometry of immunoprecipitated protein revealed that both mutant and wildtype MAB21L1 associate with transcription factors that are known regulators of PAX6 (MEIS1, MEIS2 and PBX1) and with poly(A) RNA binding proteins. Arg51 substitutions reduce the association of wild-type MAB21L1 with TBL1XR1, a component of the NCoR complex. We found limited evidence for mutation-specific interactions with MSI2/Musashi-2, an RNA-binding proteins with effects on many different developmental pathways. Given that biallelic loss-of-function variants in MAB21L1 result in a milder eye phenotype we suggest that Arg51-altering monoallelic variants most plausibly perturb eye development via a gain-of-function mechanism

    Epigenetic age acceleration in the emerging burden of cardiometabolic diseases among migrant and non-migrant African populations:the population based cross-sectional RODAM study

    Get PDF
    BACKGROUND: African populations are experiencing health transitions due to rapid urbanization and international migration. However, the role of biological aging in this emerging burden of cardiometabolic diseases (CMD) among migrant and non-migrant Africans is unknown. We aimed to examine differences in epigenetic age acceleration (EAA) as measured by four clocks (Horvath, Hannum, PhenoAge and GrimAge) and their associations with cardiometabolic factors among migrant Ghanaians in Europe and non-migrant Ghanaians. METHODS: Genome-wide DNA methylation (DNAm) data of 712 Ghanaians from cross-sectional RODAM study were used to quantify EAA. We assessed correlation of DNAmAge measures with chronological age, and then performed linear regressions to determine associations of body mass index (BMI), fasting blood glucose (FBG), blood pressure, alcohol consumption, smoking, physical activity, and one-carbon metabolism nutrients with EAA among migrant and non-migrants. We replicated our findings among 172 rural-urban sibling pairs from India migration study and among 120 native South Africans from PURE-SA-NW study. FINDINGS: We found that Ghanaian migrants have lower EAA than non-migrants. Within migrants, higher FBG was positively associated with EAA measures. Within non-migrants, higher BMI, and Vitamin B9 (folate) intake were negatively associated with EAA measures. Our findings on FBG, BMI and folate were replicated in the independent cohorts. INTERPRETATION: Our study shows that migration is negatively associated with EAA among Ghanaians. Moreover, cardiometabolic factors are differentially associated with EAA within migrant and non-migrant subgroups. Our results call for context-based interventions for CMD among transitioning populations that account for effects of biological aging. FUNDING: European Commission

    A case of familial isolated hemihyperplasia

    Get PDF
    BACKGROUND: Hemihyperplasia (hemihypertrophy) is defined as asymmetric body overgrowth of one or more body parts. Hemihyperplasia can be isolated or be part of well-defined syndromes such as in the case of Beckwith-Wiedemann syndrome (BWS). Isolated hemihyperplasia is usually sporadic, but a number of familial occurrences have been described. CASE PRESENTATION: We describe a Tunisian family in which three maternal cousins and their maternal grandfather present with isolated hemihyperplasia. CONCLUSIONS: The etiology of isolated hemihyperplasia is unknown although in BWS, genomic imprinting has been shown to play a role in the asymmetric overgrowth. Given the similarity between these two conditions, it is possible that both may share a common pathogenesis. We also discuss the possible genetic mechanisms leading to the production of hemihyperplasia in this family

    A genome-wide DNA methylation signature for SETD1B-related syndrome

    Get PDF
    SETD1B is a component of a histone methyltransferase complex that specifically methylates Lys-4 of histone H3 (H3K4) and is responsible for the epigenetic control of chromatin structure and gene expression. De novo microdeletions encompassing this gene as well as de novo missense mutations were previously linked to syndromic intellectual disability (ID). Here, we identify a specific hypermethylation signature associated with loss of function mutations in the SETD1B gene which may be used as an epigenetic marker supporting the diagnosis of syndromic SETD1B-related diseases. We demonstrate the clinical utility of this unique epi-signature by reclassifying previously identified SETD1B VUS (variant of uncertain significance) in two patients

    Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders

    Get PDF
    Overlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study, we describe 19 novel episignature disorders and compare the findings alongside 38 previously established episignatures for a total of 57 episignatures associated with 65 genetic syndromes. We demonstrate increasing resolution and specificity ranging from protein complex, gene, sub-gene, protein domain, and even single nucleotide-level Mendelian episignatures. We show the power of multiclass modeling to develop highly accurate and disease-specific diagnostic classifiers. This study significantly expands the number and spectrum of disorders with detectable DNA methylation episignatures, improves the clinical diagnostic capabilities through the resolution of unsolved cases and the reclassification of variants of unknown clinical significance, and provides further insight into the molecular etiology of Mendelian conditions

    Higher Polygenetic Predisposition for Asthma in Cow's Milk Allergic Children

    Get PDF
    Cow's milk allergy (CMA) is an early-onset allergy of which the underlying genetic factors remain largely undiscovered. CMA has been found to co-occur with other allergies and immunological hypersensitivity disorders, suggesting a shared genetic etiology. We aimed to (1) investigate and (2) validate whether CMA children carry a higher genetic susceptibility for other immunological hypersensitivity disorders using polygenic risk score analysis (PRS) and prospective phenotypic data. Twenty-two CMA patients of the Dutch EuroPrevall birth cohort study and 307 reference subjects were genotyped using single nucleotide polymorphism (SNP) array. Differentially genetic susceptibility was estimated using PRS, based on multiple P-value thresholds for SNP inclusion of previously reported genome-wide association studies (GWAS) on asthma, autism spectrum disorder, atopic dermatitis, inflammatory bowel disease and rheumatoid arthritis. These associations were validated with prospective data outcomes during a six-year follow-up in 19 patients. We observed robust and significantly higher PRSs of asthma in CMA children compared to the reference set. Association analyses using the prospective data indicated significant higher PRSs in former CMA patients suffering from asthma and related traits. Our results suggest a shared genetic etiology between CMA and asthma and a considerable predictive sensitivity potential for subsequent onset of asthma which indicates a potential use for early clinical asthma intervention programs
    • …
    corecore