117 research outputs found

    Inhomogeneous phase of a Gluon Plasma at finite temperature and density

    Get PDF
    By considering the non-perturbative effects associated with the fundamental modular region, a new phase of a Gluon Plasma at finite density is proposed. It corresponds to the transition from glueballs to non-perturbative gluons which condense at a non vanishing momentum. In this respect the proposed phase is analogous to the color superconducting LOFF phase for fermionic systems.Comment: 5 pages, 2 figure

    Self-consistent evaluation of quark masses in three flavor crystalline color superconductivity

    Get PDF
    We present a self-consistent evaluation of the constituent quark masses in the three flavor Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phases of QCD, employing an improved Nambu-Jona Lasinio model. This result allows to determine the window for values of the baryonic chemical potential where the LOFF state is energetically favored.Comment: 17 pages, 5 figures, JHEP3 style. A second treatment of the ultraviolet cutoff added. Three figures adapted to the new cutoff. Two references added. Version accepted for publication on JHE

    The Crystallography of Strange Quark Matter

    Get PDF
    Cold three-flavor quark matter at large (but not asymptotically large) densities may exist as a crystalline color superconductor. We explore this possibility by calculating the gap parameter Delta and free energy Omega(Delta) for possible crystal structures within a Ginzburg-Landau approximation, evaluating Omega(Delta) to order Delta^6. We develop a qualitative understanding of what makes a crystal structure stable, and find two structures with particularly large values of Delta and the condensation energy, within a factor of two of those for the CFL phase known to characterize QCD at asymptotically large densities. The robustness of these phases results in their being favored over wide ranges of density and though it also implies that the Ginzburg-Landau approximation is not quantitatively reliable, previous work suggests that it can be trusted for qualitative comparisons between crystal structures. We close with a look ahead at the calculations that remain to be done in order to make contact with observed pulsar glitches and neutron star cooling.Comment: 6 pages, 3 figures. Contribution to the proceedings of Strangeness in Quark Matter 2006, UCLA. Talk given by Rishi Sharm

    Hierarchical Self-Programming in Recurrent Neural Networks

    Full text link
    We study self-programming in recurrent neural networks where both neurons (the `processors') and synaptic interactions (`the programme') evolve in time simultaneously, according to specific coupled stochastic equations. The interactions are divided into a hierarchy of LL groups with adiabatically separated and monotonically increasing time-scales, representing sub-routines of the system programme of decreasing volatility. We solve this model in equilibrium, assuming ergodicity at every level, and find as our replica-symmetric solution a formalism with a structure similar but not identical to Parisi's LL-step replica symmetry breaking scheme. Apart from differences in details of the equations (due to the fact that here interactions, rather than spins, are grouped into clusters with different time-scales), in the present model the block sizes mim_i of the emerging ultrametric solution are not restricted to the interval [0,1][0,1], but are independent control parameters, defined in terms of the noise strengths of the various levels in the hierarchy, which can take any value in [0,\infty\ket. This is shown to lead to extremely rich phase diagrams, with an abundance of first-order transitions especially when the level of stochasticity in the interaction dynamics is chosen to be low.Comment: 53 pages, 19 figures. Submitted to J. Phys.

    Bulk viscosity in a cold CFL superfluid

    Get PDF
    We compute one of the bulk viscosity coefficients of cold CFL quark matter in the temperature regime where the contribution of mesons, quarks and gluons to transport phenomena is Boltzmann suppressed. In that regime dissipation occurs due to collisions of superfluid phonons, the Goldstone modes associated to the spontaneous breaking of baryon symmetry. We first review the hydrodynamics of relativistic superfluids, and remind that there are at least three bulk viscosity coefficients in these systems. We then compute the bulk viscosity coefficient associated to the normal fluid component of the superfluid. In our analysis we use Son's effective field theory for the superfluid phonon, amended to include scale breaking effects proportional to the square of the strange quark mass m_s. We compute the bulk viscosity at leading order in the scale breaking parameter, and find that it is dominated by collinear splitting and joining processes. The resulting transport coefficient is zeta=0.011 m_s^4/T, growing at low temperature T until the phonon fluid description stops making sense. Our results are relevant to study the rotational properties of a compact star formed by CFL quark matter.Comment: 19 pages, 2 figures; one reference added, version to be published in JCA

    Adult telomere length is positively correlated with survival and lifetime reproductive success in a wild passerine

    Get PDF
    Explaining variation in individual fitness is a key goal in evolutionary biology. Recently, telomeres, repeating DNA sequences capping chromosome ends, have gained attention as a biomarker for body state, physiological costs, and senescence. Existing research has provided mixed evidence for whether telomere length correlates with fitness, including survival and reproductive output. Moreover, few studies have examined how the rate of change in telomere length correlates with fitness in wild populations. Here, we intensively monitored an insular population of house sparrows, and collected longitudinal telomere and life history data (16 years, 1225 individuals). We tested whether telomere length and its rate of change predict fitness measures, namely survival, lifespan and annual and lifetime reproductive effort and success. Telomere length positively predicted short-term survival, independent of age, but did not predict lifespan, suggesting either a diminishing telomere length—survival correlation with age or other extrinsic factors of mortality. The positive association of telomere length with survival translated into reproductive benefits, as birds with longer telomeres produced more genetic recruits, hatchlings and reared more fledglings over their lifetime. In contrast, there was no association between telomere dynamics and annual reproductive output, suggesting telomere dynamics might not reflect the costs of reproduction in this population, potentially masked by variation in individual quality. The rate of change of telomere length did not correlate with neither lifespan nor lifetime reproductive success. Our results provide further evidence that telomere length correlates with fitness, and contribute to our understanding of the selection on, and evolution of, telomere dynamics

    Critical temperature for kaon condensation in color-flavor locked quark matter

    Full text link
    We study the behavior of Goldstone bosons in color-flavor-locked (CFL) quark matter at nonzero temperature. Chiral symmetry breaking in this phase of cold and dense matter gives rise to pseudo-Goldstone bosons, the lightest of these being the charged and neutral kaons K^+ and K^0. At zero temperature, Bose-Einstein condensation of the kaons occurs. Since all fermions are gapped, this kaon condensed CFL phase can, for energies below the fermionic energy gap, be described by an effective theory for the bosonic modes. We use this effective theory to investigate the melting of the condensate: we determine the temperature-dependent kaon masses self-consistently using the two-particle irreducible effective action, and we compute the transition temperature for Bose-Einstein condensation. Our results are important for studies of transport properties of the kaon condensed CFL phase, such as bulk viscosity.Comment: 24 pages, 8 figures, v2: new section about effect of electric neutrality on critical temperature added; references added; version to appear in J.Phys.

    Chiral Modulations in Curved Space I: Formalism

    Full text link
    The goal of this paper is to present a formalism that allows to handle four-fermion effective theories at finite temperature and density in curved space. The formalism is based on the use of the effective action and zeta function regularization, supports the inclusion of inhomogeneous and anisotropic phases. One of the key points of the method is the use of a non-perturbative ansatz for the heat-kernel that returns the effective action in partially resummed form, providing a way to go beyond the approximations based on the Ginzburg-Landau expansion for the partition function. The effective action for the case of ultra-static Riemannian spacetimes with compact spatial section is discussed in general and a series representation, valid when the chemical potential satisfies a certain constraint, is derived. To see the formalism at work, we consider the case of static Einstein spaces at zero chemical potential. Although in this case we expect inhomogeneous phases to occur only as meta-stable states, the problem is complex enough and allows to illustrate how to implement numerical studies of inhomogeneous phases in curved space. Finally, we extend the formalism to include arbitrary chemical potentials and obtain the analytical continuation of the effective action in curved space.Comment: 22 pages, 3 figures; version to appear in JHE

    Bulk viscosity in kaon-condensed color-flavor locked quark matter

    Full text link
    Color-flavor locked (CFL) quark matter at high densities is a color superconductor, which spontaneously breaks baryon number and chiral symmetry. Its low-energy thermodynamic and transport properties are therefore dominated by the H (superfluid) boson, and the octet of pseudoscalar pseudo-Goldstone bosons of which the neutral kaon is the lightest. We study the CFL-K^0 phase, in which the stress induced by the strange quark mass causes the kaons to condense, and there is an additional ultra-light "K^0" Goldstone boson arising from the spontaneous breaking of isospin. We compute the bulk viscosity of matter in the CFL-K^0 phase, which arises from the beta-equilibration processes K^0H+H and K^0+HH. We find that the bulk viscosity varies as T^7, unlike the CFL phase where it is exponentially Boltzmann-suppressed by the kaon's energy gap. However, in the temperature range of relevance for r-mode damping in compact stars, the bulk viscosity in the CFL-K^0 phase turns out to be even smaller than in the uncondensed CFL phase, which already has a bulk viscosity much smaller than all other known color-superconducting quark phases.Comment: 23 pages, 8 figures, v2: references added; minor rephrasings in the conclusions; version to appear in J. Phys.

    Bulk viscosity in 2SC quark matter

    Get PDF
    The bulk viscosity of three-flavor color-superconducting quark matter originating from the nonleptonic process u+s u+d is computed. It is assumed that up and down quarks form Cooper pairs while the strange quark remains unpaired (2SC phase). A general derivation of the rate of strangeness production is presented, involving contributions from a multitude of different subprocesses, including subprocesses that involve different numbers of gapped quarks as well as creation and annihilation of particles in the condensate. The rate is then used to compute the bulk viscosity as a function of the temperature, for an external oscillation frequency typical of a compact star r-mode. We find that, for temperatures far below the critical temperature T_c for 2SC pairing, the bulk viscosity of color-superconducting quark matter is suppressed relative to that of unpaired quark matter, but for T >~ 10^(-3) T_c the color-superconducting quark matter has a higher bulk viscosity. This is potentially relevant for the suppression of r-mode instabilities early in the life of a compact star.Comment: 18 pages + appendices (28 pages total), 8 figures; v3: corrected numerical error in the plots; 2SC bulk viscosity is now larger than unpaired bulk viscosity in a wider temperature rang
    • …
    corecore