117 research outputs found
Inhomogeneous phase of a Gluon Plasma at finite temperature and density
By considering the non-perturbative effects associated with the fundamental
modular region, a new phase of a Gluon Plasma at finite density is proposed. It
corresponds to the transition from glueballs to non-perturbative gluons which
condense at a non vanishing momentum. In this respect the proposed phase is
analogous to the color superconducting LOFF phase for fermionic systems.Comment: 5 pages, 2 figure
Self-consistent evaluation of quark masses in three flavor crystalline color superconductivity
We present a self-consistent evaluation of the constituent quark masses in
the three flavor Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phases of QCD,
employing an improved Nambu-Jona Lasinio model. This result allows to determine
the window for values of the baryonic chemical potential where the LOFF state
is energetically favored.Comment: 17 pages, 5 figures, JHEP3 style. A second treatment of the
ultraviolet cutoff added. Three figures adapted to the new cutoff. Two
references added. Version accepted for publication on JHE
The Crystallography of Strange Quark Matter
Cold three-flavor quark matter at large (but not asymptotically large)
densities may exist as a crystalline color superconductor. We explore this
possibility by calculating the gap parameter Delta and free energy Omega(Delta)
for possible crystal structures within a Ginzburg-Landau approximation,
evaluating Omega(Delta) to order Delta^6. We develop a qualitative
understanding of what makes a crystal structure stable, and find two structures
with particularly large values of Delta and the condensation energy, within a
factor of two of those for the CFL phase known to characterize QCD at
asymptotically large densities. The robustness of these phases results in their
being favored over wide ranges of density and though it also implies that the
Ginzburg-Landau approximation is not quantitatively reliable, previous work
suggests that it can be trusted for qualitative comparisons between crystal
structures. We close with a look ahead at the calculations that remain to be
done in order to make contact with observed pulsar glitches and neutron star
cooling.Comment: 6 pages, 3 figures. Contribution to the proceedings of Strangeness in
Quark Matter 2006, UCLA. Talk given by Rishi Sharm
Hierarchical Self-Programming in Recurrent Neural Networks
We study self-programming in recurrent neural networks where both neurons
(the `processors') and synaptic interactions (`the programme') evolve in time
simultaneously, according to specific coupled stochastic equations. The
interactions are divided into a hierarchy of groups with adiabatically
separated and monotonically increasing time-scales, representing sub-routines
of the system programme of decreasing volatility. We solve this model in
equilibrium, assuming ergodicity at every level, and find as our
replica-symmetric solution a formalism with a structure similar but not
identical to Parisi's -step replica symmetry breaking scheme. Apart from
differences in details of the equations (due to the fact that here
interactions, rather than spins, are grouped into clusters with different
time-scales), in the present model the block sizes of the emerging
ultrametric solution are not restricted to the interval , but are
independent control parameters, defined in terms of the noise strengths of the
various levels in the hierarchy, which can take any value in [0,\infty\ket.
This is shown to lead to extremely rich phase diagrams, with an abundance of
first-order transitions especially when the level of stochasticity in the
interaction dynamics is chosen to be low.Comment: 53 pages, 19 figures. Submitted to J. Phys.
Bulk viscosity in a cold CFL superfluid
We compute one of the bulk viscosity coefficients of cold CFL quark matter in
the temperature regime where the contribution of mesons, quarks and gluons to
transport phenomena is Boltzmann suppressed. In that regime dissipation occurs
due to collisions of superfluid phonons, the Goldstone modes associated to the
spontaneous breaking of baryon symmetry. We first review the hydrodynamics of
relativistic superfluids, and remind that there are at least three bulk
viscosity coefficients in these systems. We then compute the bulk viscosity
coefficient associated to the normal fluid component of the superfluid. In our
analysis we use Son's effective field theory for the superfluid phonon, amended
to include scale breaking effects proportional to the square of the strange
quark mass m_s. We compute the bulk viscosity at leading order in the scale
breaking parameter, and find that it is dominated by collinear splitting and
joining processes. The resulting transport coefficient is zeta=0.011 m_s^4/T,
growing at low temperature T until the phonon fluid description stops making
sense. Our results are relevant to study the rotational properties of a compact
star formed by CFL quark matter.Comment: 19 pages, 2 figures; one reference added, version to be published in
JCA
Adult telomere length is positively correlated with survival and lifetime reproductive success in a wild passerine
Explaining variation in individual fitness is a key goal in evolutionary biology. Recently, telomeres, repeating DNA sequences capping chromosome ends, have gained attention as a biomarker for body state, physiological costs, and senescence. Existing research has provided mixed evidence for whether telomere length correlates with fitness, including survival and reproductive output. Moreover, few studies have examined how the rate of change in telomere length correlates with fitness in wild populations. Here, we intensively monitored an insular population of house sparrows, and collected longitudinal telomere and life history data (16 years, 1225 individuals). We tested whether telomere length and its rate of change predict fitness measures, namely survival, lifespan and annual and lifetime reproductive effort and success. Telomere length positively predicted short-term survival, independent of age, but did not predict lifespan, suggesting either a diminishing telomere length—survival correlation with age or other extrinsic factors of mortality. The positive association of telomere length with survival translated into reproductive benefits, as birds with longer telomeres produced more genetic recruits, hatchlings and reared more fledglings over their lifetime. In contrast, there was no association between telomere dynamics and annual reproductive output, suggesting telomere dynamics might not reflect the costs of reproduction in this population, potentially masked by variation in individual quality. The rate of change of telomere length did not correlate with neither lifespan nor lifetime reproductive success. Our results provide further evidence that telomere length correlates with fitness, and contribute to our understanding of the selection on, and evolution of, telomere dynamics
Critical temperature for kaon condensation in color-flavor locked quark matter
We study the behavior of Goldstone bosons in color-flavor-locked (CFL) quark
matter at nonzero temperature. Chiral symmetry breaking in this phase of cold
and dense matter gives rise to pseudo-Goldstone bosons, the lightest of these
being the charged and neutral kaons K^+ and K^0. At zero temperature,
Bose-Einstein condensation of the kaons occurs. Since all fermions are gapped,
this kaon condensed CFL phase can, for energies below the fermionic energy gap,
be described by an effective theory for the bosonic modes. We use this
effective theory to investigate the melting of the condensate: we determine the
temperature-dependent kaon masses self-consistently using the two-particle
irreducible effective action, and we compute the transition temperature for
Bose-Einstein condensation. Our results are important for studies of transport
properties of the kaon condensed CFL phase, such as bulk viscosity.Comment: 24 pages, 8 figures, v2: new section about effect of electric
neutrality on critical temperature added; references added; version to appear
in J.Phys.
Chiral Modulations in Curved Space I: Formalism
The goal of this paper is to present a formalism that allows to handle
four-fermion effective theories at finite temperature and density in curved
space. The formalism is based on the use of the effective action and zeta
function regularization, supports the inclusion of inhomogeneous and
anisotropic phases. One of the key points of the method is the use of a
non-perturbative ansatz for the heat-kernel that returns the effective action
in partially resummed form, providing a way to go beyond the approximations
based on the Ginzburg-Landau expansion for the partition function. The
effective action for the case of ultra-static Riemannian spacetimes with
compact spatial section is discussed in general and a series representation,
valid when the chemical potential satisfies a certain constraint, is derived.
To see the formalism at work, we consider the case of static Einstein spaces at
zero chemical potential. Although in this case we expect inhomogeneous phases
to occur only as meta-stable states, the problem is complex enough and allows
to illustrate how to implement numerical studies of inhomogeneous phases in
curved space. Finally, we extend the formalism to include arbitrary chemical
potentials and obtain the analytical continuation of the effective action in
curved space.Comment: 22 pages, 3 figures; version to appear in JHE
Bulk viscosity in kaon-condensed color-flavor locked quark matter
Color-flavor locked (CFL) quark matter at high densities is a color
superconductor, which spontaneously breaks baryon number and chiral symmetry.
Its low-energy thermodynamic and transport properties are therefore dominated
by the H (superfluid) boson, and the octet of pseudoscalar pseudo-Goldstone
bosons of which the neutral kaon is the lightest. We study the CFL-K^0 phase,
in which the stress induced by the strange quark mass causes the kaons to
condense, and there is an additional ultra-light "K^0" Goldstone boson arising
from the spontaneous breaking of isospin. We compute the bulk viscosity of
matter in the CFL-K^0 phase, which arises from the beta-equilibration processes
K^0H+H and K^0+HH. We find that the bulk viscosity varies as T^7, unlike
the CFL phase where it is exponentially Boltzmann-suppressed by the kaon's
energy gap. However, in the temperature range of relevance for r-mode damping
in compact stars, the bulk viscosity in the CFL-K^0 phase turns out to be even
smaller than in the uncondensed CFL phase, which already has a bulk viscosity
much smaller than all other known color-superconducting quark phases.Comment: 23 pages, 8 figures, v2: references added; minor rephrasings in the
conclusions; version to appear in J. Phys.
Bulk viscosity in 2SC quark matter
The bulk viscosity of three-flavor color-superconducting quark matter
originating from the nonleptonic process u+s u+d is computed. It is assumed
that up and down quarks form Cooper pairs while the strange quark remains
unpaired (2SC phase). A general derivation of the rate of strangeness
production is presented, involving contributions from a multitude of different
subprocesses, including subprocesses that involve different numbers of gapped
quarks as well as creation and annihilation of particles in the condensate. The
rate is then used to compute the bulk viscosity as a function of the
temperature, for an external oscillation frequency typical of a compact star
r-mode. We find that, for temperatures far below the critical temperature T_c
for 2SC pairing, the bulk viscosity of color-superconducting quark matter is
suppressed relative to that of unpaired quark matter, but for T >~ 10^(-3) T_c
the color-superconducting quark matter has a higher bulk viscosity. This is
potentially relevant for the suppression of r-mode instabilities early in the
life of a compact star.Comment: 18 pages + appendices (28 pages total), 8 figures; v3: corrected
numerical error in the plots; 2SC bulk viscosity is now larger than unpaired
bulk viscosity in a wider temperature rang
- …