3,325 research outputs found

    The bacterium, Staphylococcus aureus induced chromosome aberrations with their protection by penicillin, and mitotic inhibition in Syrian hamsters

    Get PDF
    The frequency of bone marrow chromosome aberrations in Syrian hamster, Mesocricetus auratus induced by the injection of log culture, saline suspension and culture filtrate of S. aureus was significantly high while the treatment of heat-killed bacterial suspension showed no difference with control data. In the first three treated series aberrations were of individual and gross types while others had only individual types. The chromatid breaks were nonrandom, the centro-meric region being less vulnerable and the distal region was more susceptible. The aberration frequency was significantly reduced when log culture, saline suspension and culture filtrate treated specimens were also injected with penicillin 1 hr before simultaneously and 1 hr after, of which the post-treatment rendered the maximum protection. Lastly, the treatment of isolated bacterial sample retarded the mitotic frequency significantly as compared to that of normal and controls

    Enhanced grain surface effect on magnetic properties of nanometric La0.7Ca0.3MnO3 manganite : Evidence of surface spin freezing of manganite nanoparticles

    Full text link
    We have investigated the effect of nanometric grain size on magnetic properties of single phase, nanocrystalline, granular La0.7Ca0.3MnO3 (LCMO) sample. We have considered core-shell structure of our LCMO nanoparticles, which can explain its magnetic properties. From the temperature dependence of field cooled (FC) and zero-field cooled (ZFC) dc magnetization (DCM), the magnetic properties could be distinguished into two regimes: a relatively high temperature regime T > 40 K where the broad maximum of ZFC curve (at T = Tmax) is associated with the blocking of core particle moments, whereas the sharp maximum (at T = TS) is related to the freezing of surface (shell) spins. The unusual shape of M (H) loop at T = 1.5 K, temperature dependent feature of coercive field and remanent magnetization give a strong support of surface spin freezing that are occurring at lower temperature regime (T < 40 K) in this LCMO nanoparticles. Additionally, waiting time (tw) dependence of ZFC relaxation measurements at T = 50 K show weak dependence of relaxation rate [S(t)] on tw and dM/dln(t) following a logarithmic variation on time. Both of these features strongly support the high temperature regime to be associated with the blocking of core moments. At T = 20 K, ZFC relaxation measurements indicates the existence of two different types of relaxation processes in the sample with S(t) attaining a maximum at the elapsed time very close to the wait time tw = 1000 sec, which is an unequivocal sign of glassy behavior. This age-dependent effect convincingly establish the surface spin freezing of our LCMO nanoparticles associated with a background of superparamagnetic (SPM) phase of core moments.Comment: 41 pages, 10 figure

    Nonuniversal exponents in sandpiles with stochastic particle number transfer

    Full text link
    We study fixed density sandpiles in which the number of particles transferred to a neighbor on relaxing an active site is determined stochastically by a parameter pp. Using an argument, the critical density at which an active-absorbing transition occurs is found exactly. We study the critical behavior numerically and find that the exponents associated with both static and time-dependent quantities vary continuously with pp.Comment: Some parts rewritten, results unchanged. To appear in Europhys. Let

    Quenched noise and over-active sites in sandpile dynamics

    Full text link
    The dynamics of sandpile models are mapped to discrete interface equations. We study in detail the Bak-Tang-Wiesenfeld model, a stochastic model with random thresholds, and the Manna model. These are, respectively, discretizations of the quenched Edwards-Wilkinson equation with columnar, point-like and correlated noise, with the constraint that the interface velocity is either zero or exactly one. The constraint, embedded in the sandpile rules, gives rise to another noise component. This term has for the Bak-Tang-Wiesenfeld model long-range on-site correlations and reveals that with open boundary conditions there is no spatial translational invariance.Comment: 4 pages, 3 figure

    Order Parameter and Scaling Fields in Self-Organized Criticality

    Full text link
    We present a unified dynamical mean-field theory for stochastic self-organized critical models. We use a single site approximation and we include the details of different models by using effective parameters and constraints. We identify the order parameter and the relevant scaling fields in order to describe the critical behavior in terms of usual concepts of non equilibrium lattice models with steady-states. We point out the inconsistencies of previous mean-field approaches, which lead to different predictions. Numerical simulations confirm the validity of our results beyond mean-field theory.Comment: 4 RevTex pages and 2 postscript figure

    Chaos in Sandpile Models

    Full text link
    We have investigated the "weak chaos" exponent to see if it can be considered as a classification parameter of different sandpile models. Simulation results show that "weak chaos" exponent may be one of the characteristic exponents of the attractor of \textit{deterministic} models. We have shown that the (abelian) BTW sandpile model and the (non abelian) Zhang model posses different "weak chaos" exponents, so they may belong to different universality classes. We have also shown that \textit{stochasticity} destroys "weak chaos" exponents' effectiveness so it slows down the divergence of nearby configurations. Finally we show that getting off the critical point destroys this behavior of deterministic models.Comment: 5 pages, 6 figure

    Effect of particle size on thermal conductivity of nanofluid

    Get PDF
    Nanofluids, containing nanometric metallic or oxide particles, exhibit extraordinarily high thermal conductivity. It is reported that the identity (composition), amount (volume percent), size, and shape of nanoparticles largely determine the extent of this enhancement. In the present study, we have experimentally investigated the impact of Al2Cu and Ag2Al nanoparticle size and volume fraction on the effective thermal conductivity of water and ethylene glycol based nanofluid prepared by a two-stage process comprising mechanical alloying of appropriate Al-Cu and Al-Ag elemental powder blend followed by dispersing these nanoparticles (1 to 2 vol pct) in water and ethylene glycol with different particle sizes. The thermal conductivity ratio of nanofluid, measured using an indigenously developed thermal comparator device, shows a significant increase of up to 100 pct with only 1.5 vol pct nanoparticles of 30- to 40-nm average diameter. Furthermore, an analytical model shows that the interfacial layer significantly influences the effective thermal conductivity ratio of nanofluid for the comparable amount of nanoparticles

    Scaling behavior of the absorbing phase transition in a conserved lattice gas around the upper critical dimension

    Full text link
    We analyse numerically the critical behavior of a conserved lattice gas which was recently introduced as an example of the new universality class of absorbing phase transitions with a conserved field [Phys. Rev. Lett. 85, 1803 (2000)]. We determine the critical exponent of the order parameter as well as the critical exponent of the order parameter fluctuations in D=2,3,4,5 dimensions. A comparison of our results and those obtained from a mean-field approach and a field theory suggests that the upper critical dimension of the absorbing phase transition is four.Comment: 5 pages, 11 figure

    Universality Classes in Isotropic, Abelian and non-Abelian, Sandpile Models

    Full text link
    Universality in isotropic, abelian and non-abelian, sandpile models is examined using extensive numerical simulations. To characterize the critical behavior we employ an extended set of critical exponents, geometric features of the avalanches, as well as scaling functions describing the time evolution of average quantities such as the area and size during the avalanche. Comparing between the abelian Bak-Tang-Wiesenfeld model [P. Bak, C. Tang and K. Wiensenfeld, Phys. Rev. Lett. 59, 381 (1987)], and the non-abelian models introduced by Manna [S. S. Manna, J. Phys. A. 24, L363 (1991)] and Zhang [Y. C. Zhang, Phys. Rev. Lett. 63, 470 (1989)] we find strong indications that each one of these models belongs to a distinct universality class.Comment: 18 pages of text, RevTeX, additional 8 figures in 12 PS file
    • …
    corecore