8 research outputs found

    Higher Dimensional Taub-NUTs and Taub-Bolts in Einstein-Maxwell Gravity

    Full text link
    We present a class of higher dimensional solutions to Einstein-Maxwell equations in d-dimensions. These solutions are asymptotically locally flat, de-Sitter, or anti-de Sitter space-times. The solutions we obtained depend on two extra parameters other than the mass and the nut charge. These two parameters are the electric charge, q and the electric potential at infinity, V, which has a non-trivial contribution. We Analyze the conditions one can impose to obtain Taub-Nut or Taub-Bolt space-times, including the four-dimensional case. We found that in the nut case these conditions coincide with that coming from the regularity of the one-form potential at the horizon. Furthermore, the mass parameter for the higher dimensional solutions depends on the nut charge and the electric charge or the potential at infinity.Comment: 11 pages, LaTe

    Note on counterterms in asymptotically flat spacetimes

    Get PDF
    We consider in more detail the covariant counterterm proposed by Mann and Marolf in asymptotically flat spacetimes. With an eye to specific practical computations using this counterterm, we present explicit expressions in general dd dimensions that can be used in the so-called `cylindrical cut-off' to compute the action and the associated conserved quantities for an asymptotically flat spacetime. As applications, we show how to compute the action and the conserved quantities for the NUT-charged spacetime and for the Kerr black hole in four dimensions.Comment: 13 pages, v. 2 added reference

    Eguchi-Hanson Solitons in Odd Dimensions

    Full text link
    We present a new class of solutions in odd dimensions to Einstein's equations containing either a positive or negative cosmological constant. These solutions resemble the even-dimensional Eguchi-Hanson-(A)dS metrics, with the added feature of having Lorentzian signatures. They are asymptotic to (A)dSd+1/Zp_{d+1}/Z_p. In the AdS case their energy is negative relative to that of pure AdS. We present perturbative evidence in 5 dimensions that such metrics are the states of lowest energy in their asymptotic class, and present a conjecture that this is generally true for all such metrics. In the dS case these solutions have a cosmological horizon. We show that their mass at future infinity is less than that of pure dS.Comment: 26 pages, Late

    Black strings with negative cosmological constant: inclusion of electric charge and rotation

    Get PDF
    We generalize the vacuum static black strings with negative cosmological constant recently discussed in literature, by including an electromagnetic field. These higher-dimensional configurations have no dependence on the `compact' extra dimension, and their boundary topology is the product of time and Sd−3×S1S^{d-3}\times S^1 or Hd−3×S1H^{d-3}\times S^1. Rotating generalizations of the even dimensional black string configurations are considered as well. Different from the static, neutral case, no regular limit is found for a vanishing event horizon radius. We explore numerically the general properties of such solutions and, using a counterterm prescription, we compute their conserved charges and discuss their thermodynamics. We find that the thermodynamics of the black strings follows the pattern of the corresponding black hole solutions in AdS backgrounds.Comment: 35 pages, 8 figures, final versio

    Charged-rotating black holes and black strings in higher dimensional Einstein-Maxwell theory with a positive cosmological constant

    Full text link
    We present arguments for the existence of charged, rotating black holes in d=2N+1d=2N+1 dimensions, with d≥5d\geq 5 with a positive cosmological constant. These solutions posses both, a regular horizon and a cosmological horizon of spherical topology and have NN equal-magnitude angular momenta. They approach asymptotically the de Sitter spacetime background. The counterpart equations for d=2N+2d=2N+2 are investigated, by assuming that the fields are independant of the extra dimension yy, leading to black strings solutions. These solutions are regular at the event horizon. The asymptotic form of the metric is not the de Sitter form and exhibit a naked singularity at finite proper distance.Comment: 21 pages, 9 figure

    Quasilocal formalism and thermodynamics of asymptotically flat black objects

    Get PDF
    We study the properties of 5-dimensional black objects by using the renormalized boundary stress-tensor for locally asymptotically flat spacetimes. This provides a more refined form of the quasilocal formalism which is useful for a holographic interpretation of asymptotically flat gravity. We apply this technique to examine the thermodynamic properties of black holes, black rings, and black strings. The advantage of using this method is that we can go beyond the `thin ring' approximation and compute the boundary stress tensor for any general (thin or fat) black ring solution. We argue that the boundary stress tensor encodes the necessarily information to distinguish between black objects with different horizon topologies in the bulk. We also study in detail the susy black ring and clarify the relation between the asymptotic charges and the charges defined at the horizon. Furthermore, we obtain the balance condition for `thin' dipole black rings.Comment: v2 clarifications on the advantage of using quasilocal formalism for black rings added, CQG versio
    corecore