175 research outputs found

    Diagonalization- and Numerical Renormalization-Group-Based Methods for Interacting Quantum Systems

    Full text link
    In these lecture notes, we present a pedagogical review of a number of related {\it numerically exact} approaches to quantum many-body problems. In particular, we focus on methods based on the exact diagonalization of the Hamiltonian matrix and on methods extending exact diagonalization using renormalization group ideas, i.e., Wilson's Numerical Renormalization Group (NRG) and White's Density Matrix Renormalization Group (DMRG). These methods are standard tools for the investigation of a variety of interacting quantum systems, especially low-dimensional quantum lattice models. We also survey extensions to the methods to calculate properties such as dynamical quantities and behavior at finite temperature, and discuss generalizations of the DMRG method to a wider variety of systems, such as classical models and quantum chemical problems. Finally, we briefly review some recent developments for obtaining a more general formulation of the DMRG in the context of matrix product states as well as recent progress in calculating the time evolution of quantum systems using the DMRG and the relationship of the foundations of the method with quantum information theory.Comment: 51 pages; lecture notes on numerically exact methods. Pedagogical review appearing in the proceedings of the "IX. Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors", Vietri sul Mare (Salerno, Italy, October 2004

    ポイントオブケア検査装置に向けた生物医学的応用のための分析技術の開発

    Get PDF
    京都大学新制・課程博士博士(工学)甲第24234号工博第5062号京都大学大学院工学研究科材料化学専攻(主査)教授 大塚 浩二, 教授 沼田 圭司, 教授 大内 誠学位規則第4条第1項該当Doctor of Philosophy (Engineering)Kyoto UniversityDFA

    Time evolution of one-dimensional Quantum Many Body Systems

    Full text link
    The level of current understanding of the physics of time-dependent strongly correlated quantum systems is far from complete, principally due to the lack of effective controlled approaches. Recently, there has been progress in the development of approaches for one-dimensional systems. We describe recent developments in the construction of numerical schemes for general (one-dimensional) Hamiltonians: in particular, schemes based on exact diagonalization techniques and on the density matrix renormalization group method (DMRG). We present preliminary results for spinless fermions with nearest-neighbor-interaction and investigate their accuracy by comparing with exact results.Comment: Contribution for the conference proceedings of the "IX. Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors" held in Vietri sul Mare (Salerno, Italy) in October 200

    Time evolution of correlations in strongly interacting fermions after a quantum quench

    Full text link
    Using the adaptive time-dependent density matrix renormalization group, we study the time evolution of density correlations of interacting spinless fermions on a one-dimensional lattice after a sudden change in the interaction strength. Over a broad range of model parameters, the correlation function exhibits a characteristic light-cone-like time evolution representative of a ballistic transport of information. Such behavior is observed both when quenching an insulator into the metallic region and also when quenching within the insulating region. However, when a metallic state beyond the quantum critical point is quenched deep into the insulating regime, no indication for ballistic transport is observed. Instead, stable domain walls in the density correlations emerge during the time evolution, consistent with the predictions of the Kibble-Zurek mechanism.Comment: Published version; minor changes, references adde
    corecore