2,574 research outputs found

    Nonlinear coherent loss for generating non-classical states

    Full text link
    Here we discuss generation of non-classical states of bosonic mode with the help of artificially designed loss, namely the nonlinear coherent loss. We show how to generate superpositions of Fock states, and how it is possible to "comb" the initial states leaving only states with certain properties in the resulting superposition (for example, a generation of a superposition of Fock states with odd number of particles). We discuss purity of generated states and estimate maximal achievable generation fidelity

    Determining parameters of the Neugebauer family of vacuum spacetimes in terms of data specified on the symmetry axis

    Get PDF
    We express the complex potential E and the metrical fields omega and gamma of all stationary axisymmetric vacuum spacetimes that result from the application of two successive quadruple-Neugebauer (or two double-Harrison) transformations to Minkowski space in terms of data specified on the symmetry axis, which are in turn easily expressed in terms of multipole moments. Moreover, we suggest how, in future papers, we shall apply our approach to do the same thing for those vacuum solutions that arise from the application of more than two successive transformations, and for those electrovac solutions that have axis data similar to that of the vacuum solutions of the Neugebauer family. (References revised following response from referee.)Comment: 18 pages (REVTEX

    Distribution of photons in squeezed polymode light

    Get PDF
    The distribution functions of photons in squeezed and correlated light for one-mode and multimode cases are obtained based on the method of integrals of motion. Correlation coefficient and squeezing parameter are calculated. The possibility to generate squeezed light using nonstationary Casimir effect is discussed. Quantum parametric Josephson junction is proposed as quantum vacuum generator of electrical vibrations
    corecore