4,092 research outputs found

    The double-Kerr equilibrium configurations involving one extreme object

    Full text link
    We demonstrate the existence of equilibrium states in the limiting cases of the double-Kerr solution when one of the constituents is an extreme object. In the `extreme-subextreme' case the negative mass of one of the constituents is required for the balance, whereas in the `extreme-superextreme' equilibrium configurations both Kerr particles may have positive masses. We also show that the well-known relation |J|=M^2 between the mass and angular momentum in the extreme single Kerr solution ceases to be a characteristic property of the extreme Kerr particle in a binary system.Comment: 12 pages, 3 figures, submitted to Class. Quantum Gra

    Cosmological dynamics in tomographic probability representation

    Full text link
    The probability representation for quantum states of the universe in which the states are described by a fair probability distribution instead of wave function (or density matrix) is developed to consider cosmological dynamics. The evolution of the universe state is described by standard positive transition probability (tomographic transition probability) instead of the complex transition probability amplitude (Feynman path integral) of the standard approach. The latter one is expressed in terms of the tomographic transition probability. Examples of minisuperspaces in the framework of the suggested approach are presented. Possibility of observational applications of the universe tomographs are discussed.Comment: 16 page

    On the physical parametrization and magnetic analogs of the Emparan-Teo dihole solution

    Full text link
    The Emparan-Teo non-extremal black dihole solution is reparametrized using Komar quantities and the separation distance as arbitrary parameters. We show how the potential A3A_3 can be calculated for the magnetic analogs of this solution in the Einstein-Maxwell and Einstein-Maxwell-dilaton theories. We also demonstrate that, similar to the extreme case, the external magnetic field can remove the supporting strut in the non-extremal black dihole too.Comment: 9 pages, 1 figur

    On the physical interpretation of the delta=2 Tomimatsu-Sato solution

    Full text link
    The physical properties of the Tomimatsu-Sato delta=2 spacetime are analyzed, with emphasis on the issues of the negative mass distribution in this spacetime and the origin of a massless ring singularity which are treated with the aid of an equatorially asymmetric two-body configuration arising within the framework of the analytically extended double-Kerr solution. As a by-product of this analysis it is proved analytically that the Kerr spacetime with negative mass always has a massless naked ring singularity off the symmetry axis accompanied by a region with closed timelike curves, and it is also pointed out that the Boyer-Lindquist coordinates in that case should be introduced in a different manner than in the case of the Kerr solution with positive mass.Comment: 13 pages, 6 figures, submitted to Prog. Theor. Phy

    Tomographic entropy and cosmology

    Get PDF
    The probability representation of quantum mechanics including propagators and tomograms of quantum states of the universe and its application to quantum gravity and cosmology are reviewed. The minisuperspaces modeled by oscillator, free pointlike particle and repulsive oscillator are considered. The notion of tomographic entropy and its properties are used to find some inequalities for the tomographic probability determining the quantum state of the universe. The sense of the inequality as a lower bound for the entropy is clarified.Comment: 19 page

    On the Properties of Exact Solutions Endowed with Negative Mass

    Full text link
    It is shown that various pathological properties of spacetimes can be explained by the presence of negative mass, including the cases when the total mass of the solution is a positive quantity. As an illustration, we consider several well-known stationary axisymmetric vacuum and electrovac solutions of the Einstein-Maxwell equations. Our investigation naturally leads to a critique of the known maximal extensions of the Kerr and Kerr-Newman spacetimes which turn out to be neither analytic nor physically meaningful.Comment: 4 pages, no figures; published versio

    Determining parameters of the Neugebauer family of vacuum spacetimes in terms of data specified on the symmetry axis

    Get PDF
    We express the complex potential E and the metrical fields omega and gamma of all stationary axisymmetric vacuum spacetimes that result from the application of two successive quadruple-Neugebauer (or two double-Harrison) transformations to Minkowski space in terms of data specified on the symmetry axis, which are in turn easily expressed in terms of multipole moments. Moreover, we suggest how, in future papers, we shall apply our approach to do the same thing for those vacuum solutions that arise from the application of more than two successive transformations, and for those electrovac solutions that have axis data similar to that of the vacuum solutions of the Neugebauer family. (References revised following response from referee.)Comment: 18 pages (REVTEX
    • …
    corecore