429 research outputs found

    Ab Initio Study of Hybrid b-bar-gb Mesons

    Full text link
    Hybrid b-bar-gb molecules in which the heavy b-bar-b pair is bound together by the excited gluon field g are studied using the Born-Oppenheimer expansion and numerical simulations. The consistency of results from the two approaches reveals a simple and compelling physical picture for heavy hybrid states.Comment: 4 pages, 3 figures, uses REVTeX and epsf, final published versio

    Measuring the aspect ratio renormalization of anisotropic-lattice gluons

    Get PDF
    Using tadpole inproved actions we investigate the consistency between different methods of measuring the aspect ratio renormalization of anisotropic-lattice gluons for bare aspect ratios \chi_0=4,6,10 and inverse lattice spacing in the range a_s^{-1}=660-840 MeV. The tadpole corrections to the action, which are established self-consistently, are defined for two cases, mean link tadpoles in Landau gauge and gauge invariant mean plaquette tadpoles. Parameters in the latter case exhibited no dependence on the spatial lattice size, L, while in the former, parameters showed only a weak dependence on L easily extrapolated to L=\infty. The renormalized anisotropy \chi_R was measured using both the torelon dispersion relation and the sideways potential method. We found good agreement between these different approaches. Any discrepancy was at worst 3-4% which is consistent with the effect of lattice artifacts that for the torelon we estimate as O(\a_Sa_s^2/R^2) where R is the flux-tube radius. We also present some new data that suggests that rotational invariance is established more accurately for the mean-link action than the plaquette action.Comment: LaTeX 18 pages including 7 figure

    Unquenched Charmonium with NRQCD - Lattice 2000

    Get PDF
    We present results from a series of NRQCD simulations of the charmonium system, both in the quenched approximation and with n_f = 2 dynamical quarks. The spectra show evidence for quenching effects of ~10% in the S- and P-hyperfine splittings. We compare this with other systematic effects. Improving the NRQCD evolution equation altered the S-hyperfine by as much as 20 MeV, and we estimate radiative corrections may be as large as 40%.Comment: Lattice 2000 (Heavy Quark Physics

    Charmonium Spectrum from Quenched Anisotropic Lattice QCD

    Get PDF
    We present a detailed study of the charmonium spectrum using anisotropic lattice QCD. We first derive a tree-level improved clover quark action on the anisotropic lattice for arbitrary quark mass. The heavy quark mass dependences of the improvement coefficients, i.e. the ratio of the hopping parameters ζ=Kt/Ks\zeta=K_t/K_s and the clover coefficients cs,tc_{s,t}, are examined at the tree level. We then compute the charmonium spectrum in the quenched approximation employing ξ=as/at=3\xi = a_s/a_t = 3 anisotropic lattices. Simulations are made with the standard anisotropic gauge action and the anisotropic clover quark action at four lattice spacings in the range asa_s=0.07-0.2 fm. The clover coefficients cs,tc_{s,t} are estimated from tree-level tadpole improvement. On the other hand, for the ratio of the hopping parameters ζ\zeta, we adopt both the tree-level tadpole-improved value and a non-perturbative one. We calculate the spectrum of S- and P-states and their excitations. The results largely depend on the scale input even in the continuum limit, showing a quenching effect. When the lattice spacing is determined from the 1P1S1P-1S splitting, the deviation from the experimental value is estimated to be \sim30% for the S-state hyperfine splitting and \sim20% for the P-state fine structure. Our results are consistent with previous results at ξ=2\xi = 2 obtained by Chen when the lattice spacing is determined from the Sommer scale r0r_0. We also address the problem with the hyperfine splitting that different choices of the clover coefficients lead to disagreeing results in the continuum limit.Comment: 43 pages, 49 eps figures, revtex; minor changes, version to appear in Physical Review

    Percutaneous Aspiration Embolectomy in the Treatment of Acute Arterial Embolic Infrainguinal Vascular Occlusion

    Get PDF
    Background: Since its introduction, percutaneous aspiration embolectomy (PAE) has become a well-known, widely accepted and frequently applied technique for the treatment of acute arterial embolic infrainguinal vascular occlusion in lower limb ischemia. Purpose: To evaluate the technical and clinical success of sole percutaneous aspiration embolectomy (PAE) for the treatment of acute arterial embolic infrainguinal vascular occlusion. Material and Methods: During a period of 7 years, 50 patients (24 fermale, 48%) with a mean age of 73 (range 53–95) years were identified in whom 54 cases of PAE were performed for the treatment of arterial embolic infrainguinal vascular occlusion. Primary technical success was defined as residual stenosis of <50% in diameter after sole PAE, secondary technical success was defined as residual stenosis of <50% in diameter after PAE and additional percutaneous transluminal angioplasty (PTA) and/or stenting. Clinical outcome parameters (e.g. need for further intervention and/or amputation) were evaluated for the 30-day postinterventional period. Results: The primary technical success rate was 85% (46 of 54 cases). The secondary technical success rate was 96% (52 of 54 cases). Clinical outcome data were achievable in 50 of the 54 cases (93%). In 43 of the 50 patients (86%) there was no need for further intervention within the 30-day postinterventional period. In summary, during this 30-day postinterventional period after PAE amputation was carried out or death occurred in 5 of 50 patients (10%). Conclusion: Minimally invasive PAE is an effective and safe technique for the treatment of acute arterial embolic infrainguinal vascular occlusion

    One-Loop Self Energy and Renormalization of the Speed of Light for some Anisotropic Improved Quark Actions

    Get PDF
    One-loop corrections to the fermion rest mass M_1, wave function renormalization Z_2 and speed of light renormalization C_0 are presented for lattice actions that combine improved glue with clover or D234 quark actions and keep the temporal and spatial lattice spacings, a_t and a_s, distinct. We explore a range of values for the anisotropy parameter \chi = a_s/a_t and treat both massive and massless fermions.Comment: 45 LaTeX pages with 4 postscript figure

    Tadpole renormalization and relativistic corrections in lattice NRQCD

    Get PDF
    We make a comparison of two tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. Improved gauge-field and NRQCD actions are analyzed using the mean-link u0,Lu_{0,L} in Landau gauge, and using the fourth root of the average plaquette u0,Pu_{0,P}. Simulations are done for ccˉc\bar c, bcˉb\bar c, and bbˉb\bar b systems. The hyperfine splittings are computed both at leading and at next-to-leading order in the relativistic expansion. Results are obtained at lattice spacings in the range of about 0.14~fm to 0.38~fm. A number of features emerge, all of which favor tadpole renormalization using u0,Lu_{0,L}. This includes much better scaling behavior of the hyperfine splittings in the three quarkonium systems when u0,Lu_{0,L} is used. We also find that relativistic corrections to the spin splittings are smaller when u0,Lu_{0,L} is used, particularly for the ccˉc\bar c and bcˉb\bar c systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about one in lattice units. Simulations with u0,Lu_{0,L} also appear to be better behaved in this context: the bare quark masses turn out to be larger when u0,Lu_{0,L} is used, compared to when u0,Pu_{0,P} is used on lattices with comparable spacings. These results also demonstrate the need to go beyond tree-level tadpole improvement for precision simulations.Comment: 14 pages, 7 figures (minor changes to some phraseology and references

    Gauge Theories on a 2+2 Anisotropic Lattice

    Get PDF
    The implementation of gauge theories on a four-dimensional anisotropic lattice with two distinct lattice spacings is discussed, with special attention to the case where two axes are finely and two axes are coarsely discretized. Feynman rules for the Wilson gauge action are derived and the renormalizability of the theory and the recovery of the continuum limit are analyzed. The calculation of the gluon propagator and the restoration of Lorentz invariance in on-shell states is presented to one-loop order in lattice perturbation theory for SU(Nc)SU(N_c) on both 2+2 and 3+1 lattices.Comment: 27 pages, uses feynmf. Font compatibility adjuste
    corecore