22 research outputs found
Nucleotide sequence and genome organization of Dweet mottle virus and its relationship to members of the family Betaflexiviridae
The nucleotide sequence of Dweet mottle virus (DMV) was determined and compared to sequences of members of the families Alphaflexiviridae and Betaflexiviridae. The DMV genome has 8,747 nucleotides (nt) excluding the 3′ poly-(A) tail. DMV genomic RNA contains three putative open reading frames (ORFs) and untranslated regions of 73 nt at the 5′ and 541 nt at 3′ termini. ORF1 potentially encoding a 227.48-kDa polyprotein, which has methyltransferase, oxygenase, endopeptidase, helicase, and RNA-dependent RNA polymerase (RdRP) domains. ORF2 encodes a movement protein of 40.25 kDa, while ORF3 encodes a coat protein of 40.69 kDa. Protein database searches showed 98–99% matches of DMV ORFs with citrus leaf blotch virus (CLBV) sequences. Phylogenetic analysis based on the RdRP core domain revealed that DMV is closely related to CLBV as a member of the genus Citrivirus. DMV did not satisfy the molecular criteria for demarcation of an independent species within the genus Citrivirus, family Betaflexiviridae, and hence, DMV can be considered a CLBV isolate
An Improved Reference Gene for Detection of “Candidatus Liberibacter asiaticus” Associated with Citrus Huanglongbing by qPCR and Digital Droplet PCR Assays
Citrus huanglongbing (HLB) disease associated with the ‘Candidatus Liberibacter asiaticus’ (CLas) bacterium has caused significant financial damage to many citrus industries. Large-scale pathogen surveys are routinely conducted in California to detect CLas early in the disease cycle by lab-based qPCR assays. We have developed an improved reference gene for the sensitive detection of CLas from plants in diagnostic duplex qPCR and analytical digital droplet PCR (ddPCR) assays. The mitochondrial cytochrome oxidase gene (COX), widely used as a reference, is not ideal because its high copy number can inhibit amplification of small quantities of target genes. In ddPCRs, oversaturation of droplets complicates data normalization and quantification. The variable copy numbers of COX gene in metabolically active young tissue, greenhouse plants, and citrus relatives suggest the need for a non-variable, nuclear, low copy, universal reference gene for analysis of HLB hosts. The single-copy nuclear gene, malate dehydrogenase (MDH), developed here as a reference gene, is amenable to data normalization, suitable for duplex qPCR and ddPCR assays. The sequence of MDH fragment selected is conserved in most HLB hosts in the taxonomic group Aurantioideae. This study emphasizes the need to develop standard guidelines for reference genes in DNA-based PCR assays
Recommended from our members
Longevity of Imidacloprid Soil Drench on Citrus Nursery Stock for Sale at Retail Stores in Florida
The Florida psyllid testing project (Manjunath et al. 2008, Halbert et al. 2012) showed that about 10% of regulatory samples of Diaphorina citri Kuwayama collected by Florida Department of Agriculture and Consumer Services, Division of Plant Industry (FDACS/DPI) inspectors from plants for sale in Florida were positive for Candidatus Liberibacter asiaticus (Las). Most of the commercial nurseries that produce the plants do not have psyllids or Las, so the most likely source of contamination is the retail venues themselves. If this is the case, great benefit could be achieved by preventing psyllid infestation in retail stores. Florida has a requirement that citrus plants for sale be treated with an imidacloprid-based soil drench (ISD). Producers are required to tag the plant with the date of treatment. The treatment expires in six months, but our data indicate that three months probably is more realistic. In 2009, there was an increase in plants infested with psyllids 30 days post-ISD treatment. In later years, this increase was not so pronounced or did not exist, suggesting that growers are getting better control
Recommended from our members
Longevity of Imidacloprid Soil Drench on Citrus Nursery Stock for Sale at Retail Stores in Florida
The Florida psyllid testing project (Manjunath et al. 2008, Halbert et al. 2012) showed that about 10% of regulatory samples of Diaphorina citri Kuwayama collected by Florida Department of Agriculture and Consumer Services, Division of Plant Industry (FDACS/DPI) inspectors from plants for sale in Florida were positive for Candidatus Liberibacter asiaticus (Las). Most of the commercial nurseries that produce the plants do not have psyllids or Las, so the most likely source of contamination is the retail venues themselves. If this is the case, great benefit could be achieved by preventing psyllid infestation in retail stores. Florida has a requirement that citrus plants for sale be treated with an imidacloprid-based soil drench (ISD). Producers are required to tag the plant with the date of treatment. The treatment expires in six months, but our data indicate that three months probably is more realistic. In 2009, there was an increase in plants infested with psyllids 30 days post-ISD treatment. In later years, this increase was not so pronounced or did not exist, suggesting that growers are getting better control
Recommended from our members
Improved methods for genome sequencing of Liberibacters by BAC library-based metagenomics approach
Liberibacters have not yet been successfully cultured; their minimal genomes carry multiple copies of several genes. Sequences identical to phage genomes have been found in many Liberibacters. Available evidences suggest that the Liberibacter genomes are adapting rapidly in different hosts and environments. Characterization of genomes of rapidly changing unculturable organisms can be challenging. We have used a model system based on Candidatus Liberibacter psyllaurous associated with tomato “psyllid yellows” (Hansen et al., 2008) to develop methodologies using alternate techniques for sequencing metagenomes. We have constructed a BAC library from infected tomato psyllids (Bactericera cockerelli). The library consists of 57,600 clones arrayed in 150 plates each with 384 wells. DNA from individual clones were pooled for screening purposes. Initial identification of clones with Liberibacter sequences were conducted based on 16s ribosomal sequences, and contiguous clones were characterized by end sequencing and identified as containing Liberibacter genome fragments. Screening of additional clones from the library was based on probes developed on such sequences. A total of 245 clones with Liberibacter genome fragments have been identified. A total of 63 bar-coded BAC clones were sequenced by using Roche 454 technology. BAC clones from this library contain large inserts (average size 70 kb). Similarities and differences with other well characterized genomes of Liberibacters (Duan et al., 2009, Lin et al., 2011) will be presented
Recommended from our members
Improved methods for genome sequencing of Liberibacters by BAC library-based metagenomics approach
Liberibacters have not yet been successfully cultured; their minimal genomes carry multiple copies of several genes. Sequences identical to phage genomes have been found in many Liberibacters. Available evidences suggest that the Liberibacter genomes are adapting rapidly in different hosts and environments. Characterization of genomes of rapidly changing unculturable organisms can be challenging. We have used a model system based on Candidatus Liberibacter psyllaurous associated with tomato “psyllid yellows” (Hansen et al., 2008) to develop methodologies using alternate techniques for sequencing metagenomes. We have constructed a BAC library from infected tomato psyllids (Bactericera cockerelli). The library consists of 57,600 clones arrayed in 150 plates each with 384 wells. DNA from individual clones were pooled for screening purposes. Initial identification of clones with Liberibacter sequences were conducted based on 16s ribosomal sequences, and contiguous clones were characterized by end sequencing and identified as containing Liberibacter genome fragments. Screening of additional clones from the library was based on probes developed on such sequences. A total of 245 clones with Liberibacter genome fragments have been identified. A total of 63 bar-coded BAC clones were sequenced by using Roche 454 technology. BAC clones from this library contain large inserts (average size 70 kb). Similarities and differences with other well characterized genomes of Liberibacters (Duan et al., 2009, Lin et al., 2011) will be presented
Recommended from our members
Home Detection Kit for Candidatus Liberibacter asiaticus (LAS) Associated with Citrus Huanglongbing from Psyllids
Management of citrus huanglongbing (HLB) requires rapid detection of infected psyllids and trees in an orchard. Detection of HLB associated bacteria (LAS) can be done using psyllids since detection in infected trees is usually delayed (Manjunath et al., 2008). We have developed an easy to use, rapid and affordable detection kit for grower use for testing psyllids for LAS at a reasonable price for initial investment and an operating cost of about $2 per sample.. Eight psyllid samples can be simultaneously tested within 45 minutes. The psyllid DNA extraction and detection of LAS are conducted using a SmartDART™ unit which is operated by software installed on any android device for visualizing real time results. The test results can be e-mailed for both storage and analysis. The DNA prepared can be stored refrigerated and sent to a laboratory for validation. No other equipment (even pipets) is required for the test. The detection system was validated using a large number LAS isolates from many citrus varieties, from different countries; the results were comparable to that of traditional real time PCR data. Development of methods for multiplex detection of the pathogen and the host DNA from both psyllids and plant host are in progress. We believe the detection system will be useful for growers in intra-orchard management, for extension workers, nurserymen, and in areas where the disease has become endemic as well as in those areas where the disease has been recently introduced
A six nuclear gene phylogeny of Citrus (Rutaceae) taking into account hybridization and lineage sorting.
BACKGROUND: Genus Citrus (Rutaceae) comprises many important cultivated species that generally hybridize easily. Phylogenetic study of a group showing extensive hybridization is challenging. Since the genus Citrus has diverged recently (4-12 Ma), incomplete lineage sorting of ancestral polymorphisms is also likely to cause discrepancies among genes in phylogenetic inferences. Incongruence of gene trees is observed and it is essential to unravel the processes that cause inconsistencies in order to understand the phylogenetic relationships among the species. METHODOLOGY AND PRINCIPAL FINDINGS: (1) We generated phylogenetic trees using haplotype sequences of six low copy nuclear genes. (2) Published simple sequence repeat data were re-analyzed to study population structure and the results were compared with the phylogenetic trees constructed using sequence data and coalescence simulations. (3) To distinguish between hybridization and incomplete lineage sorting, we developed and utilized a coalescence simulation approach. In other studies, species trees have been inferred despite the possibility of hybridization having occurred and used to generate null distributions of the effect of lineage sorting alone (by coalescent simulation). Since this is problematic, we instead generate these distributions directly from observed gene trees. Of the six trees generated, we used the most resolved three to detect hybrids. We found that 11 of 33 samples appear to be affected by historical hybridization. Analysis of the remaining three genes supported the conclusions from the hybrid detection test. CONCLUSIONS: We have identified or confirmed probable hybrid origins for several Citrus cultivars using three different approaches-gene phylogenies, population structure analysis and coalescence simulation. Hybridization and incomplete lineage sorting were identified primarily based on differences among gene phylogenies with reference to null expectations via coalescence simulations. We conclude that identifying hybridization as a frequent cause of incongruence among gene trees is critical to correctly infer the phylogeny among species of Citrus