10 research outputs found

    Apoptosis in cancer: from pathogenesis to treatment

    Get PDF
    Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. It is also one of the most studied topics among cell biologists. An understanding of the underlying mechanism of apoptosis is important as it plays a pivotal role in the pathogenesis of many diseases. In some, the problem is due to too much apoptosis, such as in the case of degenerative diseases while in others, too little apoptosis is the culprit. Cancer is one of the scenarios where too little apoptosis occurs, resulting in malignant cells that will not die. The mechanism of apoptosis is complex and involves many pathways. Defects can occur at any point along these pathways, leading to malignant transformation of the affected cells, tumour metastasis and resistance to anticancer drugs. Despite being the cause of problem, apoptosis plays an important role in the treatment of cancer as it is a popular target of many treatment strategies. The abundance of literature suggests that targeting apoptosis in cancer is feasible. However, many troubling questions arise with the use of new drugs or treatment strategies that are designed to enhance apoptosis and critical tests must be passed before they can be used safely in human subjects

    Science Round-up

    No full text

    Genetic and environmental modulation of neurodevelopmental disorders: translational insights from labs to beds

    No full text
    Neurodevelopmental disorders (NDDs) are a heterogeneous group of prevalent neuropsychiatric illnesses with various degrees of social, cognitive, motor, language and affective deficits. NDDs are caused by aberrant brain development due to genetic and environmental perturbations. Common NDDs include autism spectrum disorder (ASD), intellectual disability, communication/speech disorders, motor/tic disorders and attention deficit hyperactivity disorder. Genetic and epigenetic/environmental factors play a key role in these NDDs with significant societal impact. Given the lack of their efficient therapies, it is important to gain further translational insights into the pathobiology of NDDs. To address these challenges, the International Stress and Behavior Society (ISBS) has established the Strategic Task Force on NDDs. Summarizing the Panel's findings, here we discuss the neurobiological mechanisms of selected common NDDs and a wider NDD+ spectrum of associated neuropsychiatric disorders with developmental trajectories. We also outline the utility of existing preclinical (animal) models for building translational and cross-diagnostic bridges to improve our understanding of various NDDs

    Heme Enzyme Structure and Function

    No full text
    The review focuses on those enzymes that catalyze oxidation reactions and those for which crystal structures are available. There are two broad classes of heme enzyme oxidants: oxygenases that use O2 to oxidize, oxygenate, substrates and peroxidases that use 2O2 to oxidize. The review demonstrates that out of the oxidants molecular oxygen is the most unusual, as O2 is not a reactive molecule despite the oxidation of nearly all biological molecules by O2 being a thermodynamically favorable process. The reason is that there is a large kinetic barrier to these reactions owing to O2 being a paramagnetic molecule so that the reaction between a majority of biological molecules that have paired spins is a spin forbidden process

    Shock

    No full text
    corecore