2 research outputs found

    Thin-Film Copper Indium Gallium Selenide Solar Cell Based on Low-Temperature All-Printing Process

    No full text
    In the solar cell field, development of simple, low-cost, and low-temperature fabrication processes has become an important trend for energy-saving and environmental issues. Copper indium gallium selenide (CIGS) solar cells have attracted much attention due to the high absorption coefficient, tunable band gap energy, and high efficiency. However, vacuum and high-temperature processing in fabrication of solar cells have limited the applications. There is a strong need to develop simple and scalable methods. In this work, a CIGS solar cell based on all printing steps and low-temperature annealing is developed. CIGS absorber thin film is deposited by using dodecylamine-stabilized CIGS nanoparticle ink followed by printing buffer layer. Silver nanowire (AgNW) ink and sol–gel-derived ZnO precursor solution are used to prepare a highly conductive window layer ZnO/[AgNW/ZnO] electrode with a printing method that achieves 16 Ω/sq sheet resistance and 94% transparency. A CIGS solar cell based on all printing processes exhibits efficiency of 1.6% with open circuit voltage of 0.48 V, short circuit current density of 9.7 mA/cm<sup>2</sup>, and fill factor of 0.34 for 200 nm thick CIGS film, fabricated under ambient conditions and annealed at 250 °C

    Silver Nanowires Binding with Sputtered ZnO to Fabricate Highly Conductive and Thermally Stable Transparent Electrode for Solar Cell Applications

    No full text
    Silver nanowire (AgNW) film has been demonstrated as excellent and low cost transparent electrode in organic solar cells as an alternative to replace scarce and expensive indium tin oxide (ITO). However, the low contact area and weak adhesion with low-lying surface as well as junction resistance between nanowires have limited the applications of AgNW film to thin film solar cells. To resolve this problem, we fabricated AgNW film as transparent conductive electrode (TCE) by binding with a thin layer of sputtered ZnO (40 nm) which not only increased contact area with low-lying surface in thin film solar cell but also improved conductivity by connecting AgNWs at the junction. The TCE thus fabricated exhibited transparency and sheet resistance of 92% and 20Ω/□, respectively. Conductive atomic force microscopy (C-AFM) study revealed the enhancement of current collection vertically and laterally through AgNWs after coating with ZnO thin film. The CuInGaSe<sub>2</sub> solar cell with TCE of our AgNW­(ZnO) demonstrated the maximum power conversion efficiency of 13.5% with improved parameters in comparison to solar cell fabricated with conventional ITO as TCE
    corecore